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Abstract

The present work regards the scaling laws for a vertical heat transport quantified by Nusselt number with
respect to Marangoni number in the context of Bénard-Marangoni convection at infinite Prandtl number.

The optimal scaling law for an upper bound on Nusselt number is obtained by applying semidefinite
programming to the variational optimization problem formulated by Hagstrom and Doering in [9]. The
leading role of the right boundary layer of the background temperature profile in improvement of the
scaling law is demonstrated by a sequence of numerical experiments.

The self-similar parametrized background profile and its application to the variational problem stated
by Hagstrom and Doering are investigated analytically for the case when the right boundary layer is set
by the positive constant function. The possible improvements of the parametrized background profile
taking into account the features of the fully optimal background profile are proposed.
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Introduction

In 1900, Henri Bénard, a French physicist, discovered a cellular pattern in a layer of fluid heated from
below. At every cell he observed an upward flow in its centre and a downward flow on the outer surface.
It was understood later in a theoretical way [1] that this pattern can be produced by buoyancy, a force
appearing in fluids due to a density gradient and gravity. The fluid becomes less dense at the heated
lower surface causing thus a density gradient that results in a force acting upward. This force triggers a
motion of the fluid which surprisingly leads to a self-organizing stable cellular pattern. Such a type of
convection is now known as Rayleigh-Bénard convection. A particular configuration of the flow depends
on Rayleigh number (Ra) that defines the ratio of gravitational forces to viscous forces. As buoyancy in
Rayleigh-Bénard convection depends on the temperature difference between two side of a layer of fluid,
Rayleigh number grows as the temperature difference increases. Then, the following flow states can be
observed depending on the temperature difference [2]:

• 0 < Ra . 1700: linear temperature gradient with no motion (thermal conductivity);

• 1700 . Ra . O(106): rotating Bénard cells triggered by buoyancy (thermal convection);

• Ra & O(106): turbulent convection.

Rayleigh number at which Bénard cells and thermal convection appear (Ra ≈ 1700) is referred to as
a critical Rayleigh number. One can note that at Ra more than 103 times the critical Rayleigh number
Bénard cells no longer exist and the flow becomes turbulent.

However, the buoyancy effect is not the only physical mechanism allowing Bénard cells to exist. The
second one is known as Marangoni effect, that is a motion of fluid due to a surface tension gradient.
The most famous example of Marangoni effect is “tears of wine” which can be observed at a wineglass’
surface where there is often a layer of liquid with an alcohol concentration gradient: it is higher near
the surface of wine and becomes lower in the upward direction. Since pure water has a much stronger
surface tension compared to alcohol’s one, an upper layer of water appearing due to evaporation of alcohol
attracts the fluid from below which returns back because of its own weight in the form of “tears”. In this
case, the surface tension gradient occurs due to the concentration gradient, but it can be also produced
by a temperature difference. As a surface tension usually increases as a temperature decreases, we can
conclude that if a temperature is not uniform at some free surface, then a surface tension gradient will
appear on it. It was shown experimentally [3] and theoretically [4] that, for a thin layer of fluid heated
from below and cooled from above with a free upper surface, the surface tension gradient occurring on it
can indeed cause Bénard cells. This type of convection is known as Bénard-Marangoni convection.

It is interesting to note that Henri Bénard proposed in his original work that a surface tension may
be related to the presence of cells because the upper surface of a layer of fluid was clearly deformed in his
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experiment, but he decided to attribute it to buoyancy. However, as argued in [5], his experiment in fact
was an example of Marangoni effect as there was a thin layer of fluid with a free upper surface.

Nowadays, surface-tension-driven convection has been found to play a leading role in numerous engi-
neering application. For example, Marangoni effect appeared to be significant in melting [6] and crystal
growth in semiconductors [7]. Schatz and Neitzel in [7] mention that Bénard-Marangoni convection is
especially significant for layers of small sizes and also in the presence of microgravity because in both
cases a buoyancy effect may be negligible. Not surprisingly that a great deal of examples can be found in
the cases where a drying process of a thin film of liquid takes place: for instance, a drying polymer film
[8].

Non-dimensional controller of Bénard-Marangoni convection is Marangoni number which essentially
defines the ratio of surface tension forces to viscous forces. Since a surface tension depends on a tem-
perature, then Marangoni number is expected to depend on dτ/dT where τ is surface tension. In other
words, the higher Marangoni number, the more sensitive surface tension gradient to slight changes in
temperature.

It is important to note, that unlike Rayleigh-Bénard convection Bénard-Marangoni convection does
not necessarily become turbulent. This appeared to be determined by Prandtl number, i.e. the ratio of
kinematic viscosity to thermal diffusivity. It was shown by numerical simulations of Bénard-Marangoni
convection [10] that for high Prandtl numbers (Pr ≈ 100) the transition to turbulent regime does not
occur even for very large Marangoni numbers (104 times critical Marangoni number at which Bénard cells
and thermal convection appear).

Another important fact obtained from the numerical simulations [10] is that the numerical results
for high Prandtl numbers almost exactly coincide with numerical results for infinite Prandtl number for
chosen Marangoni numbers. Therefore, it is of prime interest to analyse Bénard-Marangoni convection at
Pr =∞. The flow’s configuration basing on Marangoni number at Pr =∞ is as follows [9]:

• 0 < Ma . 60: linear temperature gradient with no motion (thermal conductivity);

• Ma & 60: Bénard cells and thermal convection.

The present work is fully devoted to the case of infinite Prandtl number.
When a layer of fluid subjected to heating from below and cooling from above is considered in engi-

neering applications, it is usually necessary to quantify a heat transfer between two sides of the layer. It
can be done by using Nusselt number which is an inverse of the temperature difference between lower and
upper surfaces:

Nu =
1

Tbottom − Ttop
. (1.1)

It is easy to see that if the temperature difference tends to zero which corresponds to a perfect heat
transfer, Nusselt number approaches infinity. In other words, the larger Nusselt number corresponds to
the better vertical heat transport. In experiments and numerical simulations Nusselt number is usually
calculated by taking space-time averages of temperatures on both surfaces. Boeck and Thess in [10]
concluded from numerical simulations at infinite Prandtl number that Nusselt number starts obeying a
power law with respect to Marangoni number when Ma & 104:

Nu = 0.446Ma0.238 ≈ 0.446Ma5/21. (1.2)
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The first theoretical attempt to derive a scaling law for Nusselt number was made by Pumir and
Blumenfled in [11] where the following phenomenological scaling law was suggested for large Prandtl
number

Nu ∝ Ma1/3Pr1/3. (1.3)

The most recent result regarding scaling laws of Nusselt number in Bénard-Marangoni convection is
provided by Hagstrom and Doering in [9]. They made use of the background flow method to obtain
a rigorous upper bound on Nusselt number. The background flow method suggested by Doering and
Constantin in [12] is based on the idea that variational statements for upper and lower bounds of necessary
quantities in the flows governed by PDEs may be derived if a flow is decomposed into two parts: a
time-independent background profile absorbing all boundary conditions of the full flow and a fluctuating
time-dependent remainder equipped with homogeneous boundary conditions. Since there is not any
assumption about flow fields here, this technique allows us to construct variational bounds for a general
case without being restricted by only laminar or turbulent flows. The background profile method has
been already successfully applied to boundary-driven shear flows [13], Boussinesq equations [14], Rayleigh-
Benard convection [15, 16] and recently to Bénard-Marangoni convection [9] and has allowed to derive
new rigorous bounds on energy dissipation and heat transport.

By applying this technique to a simple Pearson’s model that will be discussed in the next section,
they formulated a variational optimization problem for Nusselt number and then derived a mathematically
rigorous upper bound on Nusselt number at infinite Prandtl number

Nu < 0.838Ma2/7 = 0.838Ma0.286. (1.4)

It is easy to see that the exponent in the power law (1.2) obtained from numerical simulations is 16.7%
lower compared to (1.4). In this work we aim to improve the rigorous upper bound on Nusselt number
by further numerical and analytical investigation of the variational optimization problem suggested by
Hagstrom and Doering.

1.1 Pearson’s model

One of the models describing Marangoni phenomenon is called Pearson’s model which was historically the
first model allowing an appearance of Bénard cells due to surface tension gradient [4]. This model describes
Bénard-Marangoni convection for a simple geometry with a fixed lower surface and a nondeformable upper
surface at which constant temperature and constant negative temperature flux are set respectively and a
heat flux imposed through the layer. The two-dimensional statement of this model as presented in [9] is

1

Pr

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇2u, (1.5)

∇ · u = 0, (1.6)
∂T

∂t
+ u · ∇T = ∇2T, (1.7)

where u := iu(x, t) + kw(x, t) is a vector velocity field, p(x, t) is a scalar pressure field and T (x, t) is a
scalar temperature field. These equations are equipped with boundary conditions setting the fixed bottom
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surface of the layer with constant temperature and no-slip:

u|z=0 = 0, w|z=0 = 0, (1.8)
T |z=0 = 0. (1.9)

The negative temperature flux has to be set on the top surface in order to model cooling. Together with
an assumption that the upper surface of the layer does not deform, the resulting boundary conditions are

w|z=1 = 0, (1.10)
∂T

∂z
|z=1 = −1, (1.11)[

∂u

∂z
+ Ma

∂T

∂x

]
z=1

= 0, (1.12)

where Ma := γqh2/λρνκ in which γ is a negative derivative of surface tension with respect to T , q is
an imposed heat and other quantities determine thermal, viscous and dense properties of the fluid. Note
that unlike Rayleigh number in models for Rayleigh-Bénard convection where Ra is present in thermal
conduction equation [2], Marangoni number is included into the boundary condition for the upper surface.

Finally, periodic boundary conditions are imposed in the horizontal direction corresponding to the
x-coordinate on temperature, pressure and velocity fields, that is

u|z=0 = u|z=2π, T |z=0 = T |z=2π, p|z=0 = p|z=2π. (1.13)

In the limit Pr =∞, momentum (1.5) reduces to

∇p = ∇2u (1.14)

and taking the divergence and applying the incompressibility condition (1.6) we can obtain ∇2p = 0
implying that p is harmonic. Similarly, taking ∇2 of both sides of (1.14) gives ∇4u = 0 which, in turn,
implies that every component of u is biharmonic.

The periodic boundary conditions (1.13) allow us to expand u, v, w, T into Fourier series

u(x, t) =
+∞∑

k=−∞
ûk(z, t)e

ikx, (1.15)

v(x, t) =
+∞∑

k=−∞
v̂k(z, t)e

ikx, (1.16)

w(x, t) =

+∞∑
k=−∞

ŵk(z, t)e
ikx, (1.17)

T (x, t) =

+∞∑
k=−∞

T̂k(z, t)e
ikx. (1.18)

Now consider the solution only for w since it will be of interest in the next section. The biharmonic
equation for w then can be written

+∞∑
k=−∞

∇2∇2
(
ŵke

ikx
)

= 0. (1.19)
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Therefore, the following equation must be satisfied for every Fourier mode and at every instant of time:

∂4ŵk
∂z4

− 2k2∂
2ŵk
∂z2

+ k4ŵk = 0. (1.20)

The first two boundary conditions come directly from (1.8) and (1.10): ŵk|z=0 = 0, ŵk|z=1 = 0. Two
other boundary conditions necessary for the fourth-order differential equation are derived from (1.12) and
the incompressibility condition. Namely, (1.6) in terms of Fourier coefficients is

ikûk +
∂ŵk
∂z

= 0 (1.21)

which substituting ûk = 0 coming from (1.8) immediately gives the third boundary condition ∂ŵk
∂z = 0.

Finally, taking ∂/∂z of the equation above and applying the result to (1.12) we get the fourth boundary
condition

∂2ŵk
∂z2

∣∣∣∣
z=1

= −k2MaT̂k(1, t). (1.22)

As stated in [9], the solution for this boundary value problem is

ŵk(z, t) = −MaT̂k(1, t)fk(z) (1.23)

where a function fk(z) is defined as follows

fk(z) =
k sinh k

2(sinh k cosh k − k)
[kz cosh(kz)− sinh(kz) + (1− k cosh k)z sinh(kz)] . (1.24)

This function plays an essential role in our investigation, so its structure and behaviour will be considered
in much more detail in the following chapters. However, it should noted now that the graph and description
of fk(z) presented in [9] is made with an incorrect sign: fk(z) is in fact a non-positive function of z ∈ [0, 1]
and k ≥ 0.

1.2 Background profile method

Hagstrom and Doering in [9] adapted the background flow method for the case of Pearson’s model to
formulate a variational upper bound for Nusselt number. Namely, the temperature field is decomposed
as follows

T = τ(z) + θ(x, t) (1.25)

where τ(z) is a background profile and θ(x, t) is a fluctuation. According to (1.9) and (1.11) the following
boundary conditions are imposed on τ(z)

τ(0) = 0, (1.26)
τ ′(1) = −1 (1.27)

whereas θ(x, t) is equipped with the corresponding homogeneous boundary conditions

θ|z=0 = 0, (1.28)
∂θ

∂z

∣∣∣∣
z=1

= 0. (1.29)
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Substituting (1.25) into the equation of heat convection (1.7) gives

∂θ

∂t
+ w

dτ

dz
+ u · ∇θ =

d2τ

dz2
+∇2θ. (1.30)

It was shown by Hagstrom and Doering in [9] that for a Nusselt number expressed as

1

Nu
= 〈|∇T |2〉 (1.31)

one can derive from (1.30) the expression

1

Nu
=

ˆ 2π

0

ˆ 1

0

[(
∂θ

∂x

)2

+

(
∂θ

∂z

)2

+ 2τ ′wθ

]
dxdz − 2τ(1)−

ˆ 1

0
τ ′2dz (1.32)

where the prime denotes a derivative with respect to z. Therefore, we can argue that, given appropriate
τ(z), if the term

Qτ [θ] :=

ˆ 2π

0

ˆ 1

0

[(
∂θ

∂x

)2

+

(
∂θ

∂z

)2

+ 2τ ′wθ

]
dxdz (1.33)

is non-negative for all θ(x, t) satisfying the boundary conditions (1.28), (1.29), then there exists an upper
bound for Nusselt number defined as

1

Nu
≥ −2τ(1)−

ˆ 1

0
τ ′2dz =: −B[τ ]. (1.34)

As θ also satisfies the periodic boundary condition in the x-coordinate, it can be expanded into Fourier
series

θ(x, t) =
+∞∑

k=−∞
θ̂k(z, t)e

ikx. (1.35)

Therefore, employing the property of orthogonality of Fourier series and the fact that ŵ∗k = ŵ−k and
θ̂∗k = θ̂−k for real-valued functions w and θ, non-negativity of quadratic form Qτ [θ] transforms to condition

1

2

ˆ 1

0

∣∣∣∣∣dθ̂0

dz

∣∣∣∣∣
2

+ 2τ ′Re(ŵ∗0 θ̂0)

 dz +
∞∑
k=1

ˆ 1

0

∣∣∣∣∣dθ̂kdz
∣∣∣∣∣
2

+ k2
∣∣∣θ̂k∣∣∣2 + 2τ ′Re(ŵ∗kθ̂k)

 dz ≥ 0. (1.36)

The first term corresponding to k = 0 is trivially positive because ŵ0 = 0. We thus require that for every
k ≥ 1 the following quantity must be non-negative in order to guarantee that Qτ [θ] ≥ 0 is satisfied

Qτ,k[θ̂k] :=

ˆ 1

0

[∣∣∣θ̂′k∣∣∣2 + k2
∣∣∣θ̂k∣∣∣2 + 2τ ′Re(ŵ∗kθ̂k)

]
dz ≥ 0. (1.37)

It is referred to as a spectral constraint and essentially provides a stability condition for a chosen back-
ground profile τ(z) in terms of Fourier modes.
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Since the only requirement on τ(z) is that it has to satisfy the boundary conditions (1.26) and (1.27),
we want to find such a background profile τ(z) that an upper bound on Nusselt number defined by (1.34)
is minimized. This finally leads to an infinite-dimensional optimization problem

min
τ
B[τ ] = 2τ(1) +

ˆ 1

0
τ ′2dz (1.38)

subject to Qτ,k[θ̂k] =

ˆ 1

0

[∣∣∣θ̂′k∣∣∣2 + k2
∣∣∣θ̂k∣∣∣2 − 2Maτ ′fk(z)Re(θ̂∗k(1)θ̂k)

]
dz ≥ 0 for all k ≥ 1

for all θ̂k ∈ C1(0, 1), θ̂k(0) = 0, θ̂′k(1) = 0,

τ ∈ C1(0, 1), τ(0) = 0, τ ′(1) = −1.

Using a simple piecewise linear background profile

τ(z) =


−z, if 0 ≤ z < δ1,

−δ1, if δ1 ≤ z < 1− δ2,

−δ1 − z + 1− δ2, if 1− δ2 ≤ z ≤ 1.

(1.39)

and assuming that the boundary layer 1−δ2 ≤ z ≤ 1 is infinitesimally small, Hagstrom and Doering in [9]
solved the optimization problem (1.38) and obtained a rigorous upper bound on Nusselt number stated
in (1.4). Our purpose is to improve their result by means of finding numerically an optimal background
profile resulting from the infinite-dimensional optimization problem and then by mathematical analysis
of the results of numerical investigation.

1.3 Semidefinite programming

As it will be shown in the next chapter, the optimization problem (1.38) can be expressed as a finite-
dimensional semidefinite program. According to [17] a problem is called a semidefinite program in an
inequality form if it can be represented as

min
x

cTx (1.40)

subject to F0 +

n∑
i=1

xiFi 4 0 (1.41)

where x ∈ Rn is a variable, F0, F1, ..., FN ∈ Rk×k are constant symmetric matrices, c ∈ Rn is a constant
vector.

Denotion “4 0” means that the matrix in the left-hand side of (1.41) has to be negative semidefinite.
A matrix M is called positive or negative semidefinite if xMxT ≥ 0 or xMxT ≤ 0 respectively for any
vector x 6= 0. Then, a semidefinite program implies a linear objective function subjected to a set of affine
matrices required to be positive/negative semidefinite.

The full form of a semidefinite program also includes an equality constraint Ax = b. However, as
it will not appear in our considerations, it is sufficient to focus on an inequality form of a SDP. The
constraint (1.41) is referred to as a linear matrix inequality (LMI). It is also known from [17] that the
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same optimization problem subjected to multiple linear matrix inequalities can be expressed as a SDP as
well by constructing a block diagonal matrix made of these LMIs.

One should note that the following matrix semidefinite constraint

F (x) < 0 (1.42)

can be expressed as a LMI if F (x) is a symmetric matrix and every entry of F (x) depends linearly on x,
that is

F (x) =

c
T
11x . . . cT1nx
...

...
...

cTn1x . . . cTnnx

 (1.43)

where cij ,x ∈ Rn. This fact will be of use in the next chapter.
Due to the development of interior point methods [19], optimization problems expressed in the form

of SDP can be solved very efficiently even when a problem’s size is large. There are many codes devoted
to numerical solving of SDPs. One of the most convenient options is YALMIP, a high-level framework
for modelling and solving various optimization problems including semidefinite programs [18]. It allows
to express an optimization problem in a simple, user-friendly form and, being equipped by a solver im-
plementing a particular numerical algorithm, solve it. In this work we use a solver SeDuMi recommended
by YALMIP documentation for semidefinite programs of medium size. This solver uses an interior point
method [19] for numerical solving of SDPs.
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Numerical investigation

2.1 Piecewise semidefinite optimization

Before describing an implementation of numerical approach we shall reformulate the problem to make it
suitable for recast in the form (1.40), (1.41). The integral inequality (1.37) can be written as

Qτ,k[θ̂k] =

ˆ 1

0

[
Re(θ̂′k)

2 + k2Re(θ̂k)
2 − 2Maτ ′fk(z)Re(θk(1))Re(θ̂k)

]
dz (2.1)

+

ˆ 1

0

[
Im(θ̂′k)

2 + k2Im(θ̂k)
2 − 2Maτ ′fk(z)Im(θk(1))Im(θ̂k)

]
dz ≥ 0. (2.2)

If we are required to make these integrals non-negative separately, the whole inequality would be also
non-negative. It is therefore sufficient to require that the following functional is non-negative

Qτ,k[u] =

ˆ 1

0

[
u′2 + k2u2 − 2Maτ ′fk(z)uu(1)

]
dz ≥ 0 (2.3)

for any u(z) ∈ C1(0, 1) satisfying u(0) = 0 and u′(1) = 0. Then, the functional B[τ ] can be expressed only
in terms of τ ′ if we make use of boundary condition τ(0) = 0

B[τ ] =

ˆ 1

0

[
2τ ′ + τ ′2

]
dz. (2.4)

Out of convenience related to the further use of Legendre series in the current section, we shift the domain
in the z-coordinate to [−1, 1] by changing a variable: ζ = 2z−1. Therefore, the following transformations
must be performed:

dz =
1

2
dζ,

dτ

dz
=
dτ

dζ

dζ

dz
= 2

dτ

dζ
,

du

dz
= 2

du

dζ
.

(2.5)
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Substituting them into (2.3) and (2.4) gives the final form of infinite-dimensional optimization problem

min
τ
B[τ ] = 2

ˆ 1

−1

[
τ ′ + τ ′2

]
dζ, (2.6)

subject to Qτ,k[u] =

ˆ 1

−1

[
2u′2 +

k2

2
u2 − 2Maτ ′fkuu(1)

]
dζ ≥ 0 for all k ≥ 1,

for all u ∈ C1(−1, 1), u(−1) = 0, u′(1) = 0,

τ ∈ C1(−1, 1), τ(−1) = 0, τ ′(1) = −1

2
.

To avoid any confusion, in the remaining part of the section we will use all functions as functions of
ζ-coordinate. Derivatives in a short form, i.e. u′, are implied to be with respect to ζ. If we need to use a
function in the z-coordinate, it will be explicitly stated: for example, u(z) means u : [0, 1]→ R, contrary
to u or u(ζ) meaning u : [−1, 1]→ R. Denotion fk implies fk(1/2(1 + z)). In other sections we implicitly
assume that all functions are defined in the z-coordinate.

In order to transform the problem (2.6) into finite-dimensional form, a relaxation of u, u′ by means
of Legendre series inspired by Fantuzzi and Wynn approach in [20] is used. This choice is motivated
by the fact that Legendre polynomials constitute an orthogonal set of functions allowing to represent
the integrals of the first two terms in Qτ,k[u] as merely algebraic sums which will be shown further.
It can be noted that the variational problem (2.6) is formulated with respect to τ ′ only which means
that a finite-dimensional approximation is necessary for τ ′. Moreover, for the same reason the boundary
condition τ(−1) = 0 does not affect the optimization problem and is used only for calculating τ from τ ′

by integration. We could also use the Legendre series expansion for τ ′ and then, assuming that fk is also
expanded into Legendre series, remove the third integral term in Qτ,k[u] by using a formula for an integral
of a product of three Legendre polynomials. However, unlike this approach used in [20], a function τ ′ is
represented as a piecewise constant function defined at equally-spaced mesh because it allows to provide
more control on τ ′. It will be appreciated later when we discuss the results in the section 2.4.

Hence, we introduce the following series expansions for u, u′

u =
∞∑
n=0

ûnLn(ζ), (2.7)

u′ =
∞∑
n=0

û′nLn(ζ), (2.8)

where Ln denotes Legendre polynomial of n-order, ûn, û′n ∈ R and a prime in Legendre coefficients û′n
is used to emphasize that they belong to expansions of u′ and does not denote an actual derivative with
respect to ζ. It is known from [20] that the Legendre coefficients of expansions of a function and its
derivative are related to each other as

û0 = u(−1) + û′0 −
û′1
3

= û′0 −
û′1
3
, (2.9)

ûn =
û′n−1

2n− 1
−

û′n+1

2n+ 3
,

where the boundary condition u(−1) = 0 has been employed.
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As we will see from the numerical results in the section 2.4, a background profile τ ′ has three distinctive
parts: left, middle and right parts. It turned out that its middle part is nearly zero for all Marangoni
numbers larger than 104. Thus, it is reasonable to set an intermediate region of τ ′ to zero beforehand
separating left and right parts which can be set as piecewise constant functions as sketched in the figure
2.1.

ζ

τ ′

∆L ∆R

ζL ζR 1−1

−1
2−
1
2

0

Figure 2.1: Piecewise constant approximation for τ ′

As a result, we come to the following form of τ ′

τ ′(ζ) =



kL,1, −1 ≤ ζ ≤ −1 + ∆L,

. . .

kL,NL , −1 + (NL − 1)∆L < ζ ≤ ζL,
0, ζL < ζ ≤ ζR,
kR,1, ζR < ζ ≤ ζR + ∆R,

. . .

kR,NR , ζR + (NR − 1)∆R < ζ ≤ 1.

(2.10)

where ζL and ζR are bounds of the left and right parts of τ ′. Parameters NL and NR define the number
of finite intervals for the left and right sides. Mesh sizes are calculated from the given parameters:
∆L := (ζL + 1)/NL, ∆R := (1 − ζR)/NR. Such a definition of τ ′ allows to refine the mesh size for the
left and right parts independently. The boundary condition τ ′(1) = −1/2 is imposed by simply setting
kR,NR = −1/2.

Substituting the piecewise approximation for τ ′ into B[τ(ζ)] gives its finite-dimensional form

B(kL,kR) = 2∆Lk
T
LkL + 2∆Rk

T
RkR + 2∆L1

TkL + 2∆R1
TkR (2.11)

where 1 is a vector of all ones with a corresponding for multiplication dimension. Since semidefinite
programming requires to use a linear objective function, we remove the quadratic terms by introducing
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two slack variables together with Schur complements. It is known [17] that a minimization of (2.11) is
equivalent to a minimization of

B(kL,kR, ηL, ηR) = ηL + ηR + 2∆L1
TkL + 2∆R1

TkR (2.12)

subjected to a positive semidefiniteness of the following matrices

SL :=

[
diag(2/∆L) kL

kTL ηL

]
< 0, (2.13)

SR :=

[
diag(2/∆R) kR

kTR ηR

]
< 0, (2.14)

where ηL and ηR are slack variables, SL and SR are so called Schur complements.
After substitution of Legendre series and τ ′ the quadratic form becomes

Q(û′, û,kL,kR) = 2

∞∑
n=0

∞∑
m=0

û′nû
′
m

ˆ 1

−1
Ln(ζ)Lm(ζ)dζ

+
k2

2

∞∑
n=0

∞∑
m=0

ûnûm

ˆ 1

−1
Ln(ζ)Lm(ζ)dζ

− 2Ma
∞∑
n=0

∞∑
m=0

ûnûm

NL∑
p=1

kL,pI
L
n,p +

NR∑
p=1

kR,pI
R
n,p

 (2.15)

where ILn,p, IRn,p are defined as follows

ILn,p :=

ˆ −1+p∆L

−1+(p−1)∆L

Ln(ζ)fk(ζ)dζ, (2.16)

IRn,p :=

ˆ ζR+p∆R

ζR+(p−1)∆R

Ln(ζ)fk(ζ)dζ. (2.17)

Orthogonality of Legendre polynomials implies that
ˆ 1

−1
Ln(ζ)Lm(ζ)dζ =

2

2n+ 1
δnm (2.18)

for all n,m ≥ 0. Therefore, the first two terms in the quadratic form become infinite algebraic sums.
Unlike an approach presented in [20] we truncate infinite sums without any additional analysis of the
remaining parts. It will not cause any significant issues and only force us to consider more Legendre
coefficients to get more smooth profiles than if we employed the technique suggested by Fantuzzi and
Wynn. Hence, assuming that we consider Legendre polynomials only up to Nu′ and Nu orders for u and
u′ expansions respectively, the quadratic form transforms to

Q(û′, û,kL,kR) = 2

Nu′∑
n=0

(û′n)2

2n+ 1
+
k2

2

Nu∑
n=0

û2
n

2n+ 1
− 2Ma

Nu∑
n=0

Nu∑
m=0

ûnûm

NL∑
p=1

kL,pI
L
n,p +

NR∑
p=1

kR,pI
R
n,p

 .

(2.19)
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It can be rewritten in a matrix form

Q(û′, û,kL,kR) = 2û′TLu′û
′ +

k2

2
ûTLuû− 2MaûT

(
ILkL1

T + IRkR1T
)
û (2.20)

where Lu′ , Lu := diag( 2
2n+1) are diagonal matrices and IL := (ILn,p), IR := (IRn,p) are matrices of the

integrals.
Using the relations (2.9) we can express û as û = Tuû′ where Tu is defined as follows

Tu :=


1 −1/3 0 . . . 0
1 0 −1/5 . . . 0
...

. . . . . . . . .
...

0 . . . 1/(2Nu − 1) 0 −1/(2Nu + 3)

 (2.21)

which implies that Nu = Nu′ − 1. Then, substituting Tuû′ instead of û into (2.20) gives

QkL,kR,k(û
′, û) = û′T

[
2Lu′ +

k2

2
T Tu LuTu − 2MaT Tu

(
ILkL1

T + IRkR1T
)
Tu

]
û′. (2.22)

By the definition of positive semidefinite matrices, a requirement for this expression to be non-negative
is equivalent to a requirement for the matrix inside the brackets to be posivite semidefinite.

Introduce the following matrices

Q1,k := 2Lu′ +
k2

2
T Tu LuTu, (2.23)

Q2,k(kL,kR) := 2MaT Tu
(
ILkL1

T + IRkR1T
)
Tu. (2.24)

(2.25)

As it was mentioned in the introduction, a linear matrix inequality must consist of symmetric matrices
whereas the matrix Q2,k(kL,kR) is non-symmetric. However, it is easy to show that Q2,k(kL,kR) is pos-
itive semidefinite if its symmetric part sym(Q2,k) = 1/2

[
Q2,k +QT2,k

]
is positive semidefinite. Therefore,

we can replace Q2,k(kL,kR) with its symmetric part without any loss of generality. Then, the final form
of constraint is

Qk(kL,kR) := Q1,k + 1/2
[
Q2,k +QT2,k

]
< 0 (2.26)

which is a LMI by the argument given in the end of the introduction.
This constraint must be satisfied for all k ≥ 0. However, it can be shown that there exists such kmax

that for all k ≥ kmax the original spectral constraint (2.3) is satisfied. Indeed, if we drop the first term
in (2.3) which is always positive and use L2-norms on u(z) and u(1), we can obtain that the spectral
constraint is always satisfied if

k ≥ 2Ma1/2||τ(z)′||∞||fk(z)||∞ =: kmax (2.27)

where ||τ(z)′||∞ is expected to be bounded and not growing with respect to Marangoni number and
||fk(z)||∞ ≈ 0.2 by definition (1.24). For numerical purposes, we can take empirically ||τ(z)′||∞ = 1
and check it after solving the optimization problem to ensure that all necessary spectral constrains were
included into it.
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In summary, we have formulated the following semidefinite program

min
kL,kR,ηL,ηR

B(kL,kR, ηL, ηR) (2.28)

subject to Qk(kL,kR) < 0 for all 1 ≤ k ≤ 0.4Ma1/2,

SL < 0,

SR < 0,

kR,NR = −1/2.

An upper bound on Nusselt number can be easily calculated given a minimized B(kL,kR, ηL, ηR):

Nu ≤ −1

Bopt(kL,kR, ηL, ηR)
. (2.29)

It should be noted that the boundary condition u′(1) = 0 is not imposed, because it is still not clear
how to do it in terms of finite Legendre series [20]. Thus, we implicitly allow u′(1) to be arbitrary.

2.2 Optimal scaling law for Nusselt number

Following the conclusion of Boeck and Thess in [10] that Nusselt number exhibits a steady scaling with
respect to Marangoni number when Ma ≥ 104, we solve the semidefinite program 2.28 for a sequence
of Marangoni numbers from Ma = 104 to Ma = 106 and get corresponding optimal background profiles
τ ′ from which we can calculate optimal upper bounds on Nusselt number using (2.29). Our choice of
the largest Marangoni number Ma = 106 is motivated by numerical limitations which will be discussed
in the section 2.7. The resulting upper bounds and currently existing scaling laws for Nusselt number
are presented in the log-log plot 2.2. The calculated bound clearly obeys the power law which has the
following form

Nu ≤ 0.554Ma0.252. (2.30)

It can be shown that optimal upper bounds on Nusselt number for Marangoni numbers below 104 indeed
do not obey a power law and, therefore, are out of our interest.
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Figure 2.2: Scaling laws for Nusselt number.

We can observe that there are both pre-factor and exponent improvements compared to Hagstrom
and Doering rigorous upper bound Nu ≤ 0.838Ma0.286. Moreover, (2.30) is close to the scaling law on
Nusselt number obtained from numerical simulations: Nu = 0.446Ma0.238. The power in (2.30) is slightly
higher than 1/4 and gives hope that the true power law’s exponent resulting from the infinite-dimensional
optimization problem may be 1/4 or even lower taking into account higher Marangoni numbers. This
fact will motivate our investigation in the next chapter aimed at analytical improvement of the rigorous
upper bound.

2.3 Critical wavenumbers

Before proceeding to an analysis of optimal background profiles, it is important to understand how the
constraints in the semidefinite program (2.28) affect the optimization process. Our constraints are in
essence the affine matrices required to be positive semidefinite. It is known that a positive semidefinite
matrix has non-negative eigenvalues. Therefore, if after finishing optimization of (2.28) some matrices
from the constraints have zero eigenvalues, then it is highly likely that the “boundaries” are reached for
the corresponding constraints during optimization. Recalling that each constraint and its matrix are
related to a particular wavenumber, we can conclude that the corresponding wavenumbers are critical.
Hence, it is necessary to look at minimum eigenvalues (also called ground state eigenvalues) of all matrices
Qk with substituted optimal kL,kR. The resulting plot for different Marangoni numbers and a range
of wavenumbers 1 ≤ k . 100 is presented in the figure 2.3. Ground state eigenvalues continue growing
for wavenumbers up to k = 400 in a similar manner. Higher wavenumbers were not investigated due to
numerical issues which will be discussed in the section 2.7.
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Figure 2.3: Ground state eigenvalues.

It can be observed that for all considered Marangoni numbers there is a critical wavenumber k = 3.
It is the only zero ground state eigenvalue for relatively low Marangoni numbers, but as Ma increases, a
local minima appears on the curve of ground state eigenvalues which tends to zero as Ma grows further
until it finally reaches a zero value. It happens at approximately Ma = 5×104 where an additional pair of
critical wavenumbers appears. If we increase Marangoni number further, these new critical wavenumbers
start shifting which is shown in detail in the figure 2.5 and table 2.4.

Marangoni number (Ma) Critical wavenumbers (kcr) kmax
104 3 40

5× 104 3, 33, 34 90

105 3, 33, 34 127

3× 105 3, 34, 35 220

5× 105 3, 37, 38 283

106 3, 42, 43 400

Figure 2.4: Shift of critical wavenumbers.
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Figure 2.5: A pair of zero ground state eigenvalues.

One can note from the figure 2.3 that for Ma ≥ 5 × 104 the curve past k ≈ 50 decreases steadily as
Marangoni number grows further which resembles the way the pair of additional critical wavenumbers
appears for lower Marangoni numbers. As a result, we can expect that a new pair of critical wavenumbers
or a single zero eigenvalue may appear in a similar fashion if we consider Marangoni numbers above 106.

It can be also observed from the table 2.4 that the second/third critical wavenumber scale with
respect to Marangoni number as approximately kcr ∝ Ma1/10 which is significantly lower compared to the
analytically calculated maximum wavenumber kmax ∝ Ma1/2.

We should note one more important point. The second pair of critical wavenumbers can be guessed
without considering the whole interval 1 ≤ k ≤ kmax. In fact, one can carry out calculations for only
one wavenumber k = 3 (i.e. with only one constraint Q3 < 0 in (2.28)), see that there is a range of
negative ground state eigenvalues, take wavenumbers corresponding to only the two smallest ground state
eigenvalues, repeat calculations with constraints corresponding to the selected wavenumbers and k = 3 and
observe that once these three constraints are satisfied, the whole range of previously negative ground state
eigenvalues is now automatically positive. From this behaviour we can conclude the following qualitative
algorithm of seeking the optimal solution: the wavenumber k = 3 sets the whole profile’s structure; after
that another critical wavenumber (or a pair of them) is “sought” by the optimization algorithm such that
the profile for k = 3 is adjusted to become feasible for the whole considered range of wavenumbers.

2.4 Analysis of background profile

Out of convenience we present optimal background profiles τ and τ ′ in the domain z ∈ [0, 1]. A typical
optimal τ together with a simple profile (1.39) used by Hagstrom and Doering in [9] for Ma = 104 are
presented in the figure 2.6. It can be observed that the optimal background profile consist of two distinctive
boundary layers with an approximately constant middle part. The resultant left boundary layer is much
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larger compared to Hagstrom and Doering profile. The right boundary layer assumed to be negligible
in (1.39) is clearly present in optimal τ and has both increasing and decreasing intervals creating thus a
double boundary layer at the upper surface.

0 0.2 0.4 0.6 0.8 1

z

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

τ
(z
)

SDP, Ma = 104

Hagstrom and Doering, Ma = 104

Figure 2.6: Optimal background profile τ(z) for Ma = 104 and Hagstrom and Doering profile.

From the mathematical point of view, it is more important to analyse optimal background profiles τ ′

which are shown in the figure 2.7 for a range of Marangoni numbers from 104 up to 2 × 105. It can be
clearly observed that the profiles are self-similar and have two distinctive parts: the left part tending to
z = 0 and the right part tending to z = 1 as Ma increases. Furthermore, both parts of τ ′ seem to collapse
as Marangoni number increases. Wavy structure of the right part of τ ′ profiles is explained by using the
finite-dimensional approximation for u and u′ and the following truncation of infinite sums compared to
[20] where the full form of infinite sums were analysed. However, it does not affect the results significantly
and therefore was not employed in this work. For obtaining smooth profiles one could implement the
same problem using recently released Matlab code QUINOPT [22].
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Figure 2.7: Optimal background profiles τ ′(z).

Apart from collapsing, i.e. scaling along the z-coordinate, the left and right parts of τ ′ profiles also
scale vertically with respect to Marangoni number. It can be seen from the figure 2.8 that the pick of the
left side exhibits a steady growth as Marangoni number increases. In contrast, the right side’s pick rather
oscillates around some value than merely grows or decays. It may be possible that these oscillations are
linked to the shifting second critical wavenumbers.
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Figure 2.8: Left side of τ ′(z) profiles.

From these results and the investigation of ground state eigenvalues, we can give the following in-
terpretation of the action of critical wavenumbers on a background profile. Firstly, the whole profile’s
structure is caused by a critical wavenumber k = 3. It is not surprising regarding the left part of profiles if
we look at fk(z) for a different range of k carefully. It can be seen from the middle graph in the figure 2.9
that maxk fk(z) = f3(z) for 0 ≤ z < 0.5. Moreover, we can observe from the top plot in the same figure
that fk(z) is nearly zero for k > 15 on the same range of z. It means that the third term in the functional
Qτ,k[u] in (2.3) is not affected by τ ′(z) at 0 ≤ z < 0.5 when k & 15. Therefore, we can argue that the
left part of the profile is determined by only k = 3 whereas wavenumbers larger than approximately 15
do not affect it whatsoever.
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Figure 2.9: Common behaviour of fk(z) (top), fk(z) at 0 ≤ z ≤ 0.25 (middle) and concentraction of fk(z)
near z = 1 (bottom).

What is more interesting, the form of the right part is also determined by the constraint related to
the first critical wavenumber k = 3. One can observe from the figure 2.10 that the right part similar to
what we saw in the figure 2.7 is present when only one constraint corresponding to k = 3 is included
into the optimization problem (2.28). When we then include two additional constraints corresponding to
a pair of higher critical wavenumbers, the right part is slightly adjusted but its structure is not affected
qualitatively.
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Figure 2.10: Adjustment of τ ′(z) profile for Ma = 105 caused by higher critical wavenumbers.

It is important to note that due to a flexibility of the piecewise approximation of τ ′, we can enforce
different conditions on τ ′ via the coefficients kL, kR in order to clarify the way the right part of the profile
τ ′ affects the scaling law for an upper bound on Nusselt number. For example, we can imitate the case
considered by Hagstrom and Doering in [9] where they assumed that τ ′ ≤ 0 by requiring kL,i ≤ 0 and
kR,i ≤ 0 which is still a semidefinite program. The resultant optimal background profile τ ′ for Ma = 104

is shown on the third plot in the figure 2.11. It can be observed that the left part is thinner compared to
the case of unrestricted kL, kR located at the top of the same figure. The right boundary layerm in turn
becomes extremely tiny.

Furthermore, we can allow the left part set by kL to be arbitrary, but neglect the right part by
enforcing kR,i = 0. In this case one can observe from the second graph in the figure 2.11 that the left
part is still smaller than in the original case, but bigger than in the case of τ ′ ≤ 0. This result is caused
by the positive part of τ ′ including a sharp positive increase at the boundary of the left part. Moreover,
if the boundary is moved by means of changing ζL in the SDP, a small positive jump persists.

Hagstrom and Doering profile presented in the bottom of the figure 2.11 exhibits the smallest left part
compared to other optimal background profiles.
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Figure 2.11: τ ′(z) for Ma = 104 in the case of general kL, kR (top), kR = 0 (second from the top),
kL,i, kR,i ≤ 0 (middle), Hagstrom and Doering profile (bottom).

Solving the semidefinite program (2.28) with appropriate constraints for a range of Marangoni num-
bers, we obtain the following scaling laws

Truncated right part: Nu ≤ 0.441Ma0.295, (2.31)

Negative τ ′: Nu ≤ 0.420Ma0.305. (2.32)

It is easy to see that these power laws are significantly worse than the fully optimal power law (2.30).
Moreover, the exponents (2.31) and (2.32) are even greater than 2/7 which is the exponent in Hagstrom
an Doering power law (1.4). In fact, we suspect that the exponents asymptotically tend to 2/7. The
comparative plot is presented in the figure 2.12. The following conclusions can be deduced from the
comparison of optimal background profiles and scaling laws for different cases:

1. the larger left part and a negative segment of the right part of τ ′ seems to produce the smaller upper
bound on Nusselt number;

23



2. both parts become larger due to a positive part of τ ′.
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Figure 2.12: Comparison of upper bounds produced by different forms of profiles.

These numerical experiments clearly show an importance of the positivity of the right part. Firstly,
it allows the left part which is suggested to be the main contributor in decreasing an upper bound on
Nusselt number to be larger. Secondly, it makes the right negative boundary layer wider. As a result, the
interplay of the boundary layers produces a significantly lower upper bound on Nusselt number.

2.5 Discontinuous piecewise optimization

From the previous numerical investigation using semidefinite programming we have learnt the importance
of the positive right part of τ ′ profile. It is not meaningless to suggest that we may get a scaling law
for Nusselt number similar to the SDP one if we used a simplified piecewise τ ′ profile similar to the
Hagstrom and Doering profile (1.39), but with a fixed positive right part instead of the negative one.
Such a simplified profile is shown in the figure 2.13 and has the following expression

τ ′(ζ) =


−1/2, −1 ≤ ζ ≤ ζL,
0, ζL ≤ ζ ≤ ζR,
κ, ζR ≤ ζ ≤ 1.

(2.33)

where κ ≥ 0 is some fixed value chosen empirically and ζL and ζR are to be varied.
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It leads to a modified optimization problem

min
ζL,ζR

1

2
(ζR − ζL) + 2

(
κ+

1

2

)2

(1− ζR)− 1 (2.34)

subject to
ˆ 1

−1

[
2u′2 +

k2

2
u2

]
dζ + Mau(1)

ˆ ζL

−1
ufkdζ − 2κMau(1)

ˆ 1

ζR

ufkdζ ≥ 0 for all 1 ≤ k ≤ 0.4Ma1/2

(2.35)

which cannot be solved by means of semidefinite programming. However, optimal solutions are still
achievable with a sufficient computational efficiency if we consider a naive algorithm for solving the
optimization problem.

In order to transform an integral constraint to a finite-dimensional form, we are going to use the same
strategy with Legendre series as in the piecewise SDP, so all repeating details will be skipped. Hence,
expanding u and u′ in truncated Legendre series gives the following form of the integral constraint

2

Nu′∑
n=0

2(û′n)2

2n+ 1
+
k2

2

Nu∑
n=0

2û2
n

2n+ 1
− 2Ma

Nu∑
n=0

Nu∑
m=0

ûnûm

[
1

2

ˆ ζL

−1
Lnfkdζ − κ

ˆ 1

ζR

Lnfkdζ

]
≥ 0. (2.36)

The naive algorithm is based on the idea that we can successively vary ζL and ζR in a range −1 ≤ ζL ≤
ζR ≤ 1 such that this inequality is satisfied for all k ≤ kmax and the objective function (2.34) reaches its
minima. It is possible to implement if two remaining integrals are split into finite sums with sufficiently
small steps. However, as we can observe from the previous numerical works, the accuracy of the steps
must depend on Marangoni number being considered (i.e. steps must decrease as Ma increases) because
otherwise we will get too rough solutions and may lose important details of the scaling law. In order to
bound the influence of inaccuracy, we will be using guesses for limits of optimal ζL,opt and ζR,opt for each
Marangoni number such that the guesses will depend on Ma. In other words, we say that the following
limits can be calculated for every Ma

−1 ≤ ζL,min(Ma) < ζL,opt(Ma) < ζL,max(Ma) ≤ 1, (2.37)
−1 ≤ ζR,min(Ma) < ζR,opt(Ma) < ζR,max(Ma) ≤ 1. (2.38)

One could argue that it is hard to construct such limits in general. Even though it is true, we are rather
interested in the scaling laws of ζL,opt(Ma) and ζL,opt(Ma) than their particular values for a given arbitrary
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Ma which implies that the optimization problem is solved for a whole array of Marangoni number. Indeed,
if we have an equally-spaced sequence of Marangoni numbers (Man) = (Ma0,Ma1, ...) , then basing on
the idea that ζL,opt(Ma), ζR,opt(Ma) must collapse as Ma increases, the recursive sequences of limits can
be produced

ζL,min(Man) = ζL,opt(Man−1)− 2[ζL,max(Man−1)− ζL,opt(Man−1)], (2.39)
ζL,max(Man) = ζL,opt(Man−1), (2.40)
ζR,min(Man) = ζR,opt(Man−1), (2.41)
ζR,max(Man) = ζR,opt(Man−1) + 2[ζL,opt(Man−1)− ζR,min(Man−1)]. (2.42)

The n-th iteration of this process for the case of ζL is demonstrated in the figure 2.14. It is easily seen
that if the optimal ζL,opt and ζR,opt are collapsing with respect to increasing Marangoni number, then
the intervals [ζL,min, ζL,max] and [ζR,min, ζR,max] are shrinking. Therefore, if we set a constant number of
discretization steps , a necessary level of accuracy will be still maintained because smaller and smaller
limiting intervals are considered as Ma increases. We only need to set initial guesses for these interval for
Ma0 that can be obtained from the corresponding results in piecewise semidefinite optimization.

ζ

2
(
ζn−2
L,opt − ζ

n−1
L,opt

)

ζn−2
L,optζn−1

L,opt

ζnL,min ζnL,max

−1

Figure 2.14: Limits of ζL,opt for Man

In the light of this discussion, we rewrite the inequality constraint on the quadratic from such that

2

Nu′∑
n=0

2(û′n)2

2n+ 1
+
k2

2

Nu∑
n=0

2û2
n

2n+ 1

−2Ma
Nu∑
n=0

Nu∑
m=0

ûnûm

[
1

2

(ˆ ζL,min

−1
Lnfkdζ +

ˆ ζL

ζL,min

Lnfkdζ

)
− κ

(ˆ ζR,max

ζR

Lnfkdζ +

ˆ 1

ζR,max

Lnfkdζ

)]
≥ 0

(2.43)

where ζL,min < ζL ≤ ζL,max and ζR,min ≤ ζR < ζR,max.
The integrals not involving ζL and ζR are not varied in optimization problem, so they can be calculated

beforehand. Denote them

ln,0 :=

ˆ ζL,min

−1
Lnfkdζ, (2.44)

rn,0 :=

ˆ 1

ζR,max

Lnfkdζ, (2.45)
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and corresponding vectors l0 := (l1,0, l2,0, ..., lNu,0)T , r0 := (r1,0, r2,0, ..., rNu,0)T .
To make the optimization problem finite-dimensional, it is necessary to express integrals involv-

ing optimizing variables as finite sums. Suppose that the intervals [ζL,min(Man), ζL,max(Man)] and
[ζR,min(Man), ζR,max(Man)] are divided into a constant number of spans: NL,max and NR,max respec-
tively. Then, we have the following mesh sizes for left and right parts

∆L :=
ζL,max(Man)− ζL,min(Man)

NL,max
, (2.46)

∆R :=
ζR,max(Man)− ζR,min(Man)

NR,max
,

and, therefore, ζL and ζR can be expressed as ζL = NL∆L and ζR = NR∆R which makes NL, NR ∈ N
new optimizing variables. It can be seen from (2.46) that the mesh sizes decrease steadily as the bounding
intervals shrink.

Next, we define integrals on each span

Ln,i :=

ˆ −1+i∆L

−1+(i−1)∆L

Lnfkdζ, 1 ≤ i ≤ NL, (2.47)

Rn,i :=

ˆ ζR+i∆R

ζR+(i−1)∆R

Lnfkdζ, 1 ≤ i ≤ NR, (2.48)

so Ln,i and Rn,i constitute the corresponding matrices L and R.
Finally, substituting these results into (2.43) gives an inequality

2

Nu′∑
n=0

2 |u′n|
2

2n+ 1
+
k2

2

Nu∑
n=0

2 |un|2

2n+ 1
− 2Ma

Nu∑
n=0

Nu∑
m=0

unum

[
1

2

(
ln,0 +

NL∑
i=1

Ln,i

)
− κ

(
rn,0 +

NR∑
i=1

Rn,i

)]
≥ 0

or, equally, the positive semidefiniteness constraint

Qk(NL, NR) := Q1,k + 2MaT Tu

[
1

2
(l0 + L 1L)1Tu − κ (r0 +R 1R)1Tu

]
Tu < 0 (2.49)

where 1L ∈ RNL , 1R ∈ RNR , 1u ∈ RNu and Q1,k, Tu are defined as in the piecewise SDP.
Integrals Ln,i and Rn,i can be easily prepared beforehand using Simpson’s rule. Even for very small

∆L and ∆R it is computationally efficient.
Recalling that our new optimization variables are NL and NR, we update the optimization problem:

min
NL,NR

1

2
(NR∆R −NL∆L) + 2

(
κ+

1

2

)2

(1−NR∆R)− 1 (2.50)

subject to Qk(NL, NR) < 0 for all 1 ≤ k ≤ 0.4Ma1/2, (2.51)
1 ≤ NL ≤ NL,max,

1 ≤ NR ≤ NR,max.

(2.52)

This is a discontinuous optimization problem. Hence, it is solved by brute force where NL and NR are
varied successively from 1 to NL,max and NR,max respectively such that (2.51) is satisfied and the objective
function (2.50) is minimized. Even though the algorithm is naive and may be significantly improved, its
performance has appeared to be sufficient for our purposes.
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2.6 Results of discontinuous optimization

The resulting optimal upper bounds on Nusselt number are presented in the figure 2.15 together with
available scaling laws for Nusselt number. It can be observed that the upper bounds corresponding to the
simplified background profile (2.33) are only slightly above the fully optimal upper bounds coming from
the SDP results. It means that our assumption about the significance of the positive right part is correct
at least for a range of Marangoni numbers up to 106.

10
4

10
5

10
6

Ma

10
0

10
1

10
2

N
u

Discontinuous optimization

Piecewise SDP

Hagstrom and Doering

Numerical simulations

Figure 2.15: Comparison of results of discontinuous optimization to other scaling laws for Nusselt number.

However, the upper bounds resulting from the discontinuous optimization problem do not strictly
obey the power law. In fact, it was found that the exponent of the power law becomes dependent on
Marangoni number. We investigate it together the scaling laws for boundary layers widths defined by
δL := ζL + 1 and δR := 1− ζR. We can reasonably assume that δL(Ma) and δR(Ma) as well as an upper
bound on Nu obey some power laws at least locally. These local powers can be retrieved if we recall that
power laws are merely lines in a log-log scale. Indeed, suppose that we want to calculate a power for a
quantity Y obeying locally a power law Y = cXγ . Taking the natural logarithm of both sides gives

ln(Y ) = γ ln(X) + ln(c). (2.53)

It means that we can calculate γ using linear least-square for a local choice of X and Y in the logarithmic
scale. Therefore, given a sequence (Xn)Nn=1 and a corresponding sequence (Yn)Nn=1, a local power can be
retrieved by solving linear least-square for [ln(Xn−1), ln(Xn), ln(Xn+1)] and [ln(Yn−1), ln(Yn), ln(Yn+1)]
for every n ∈ [2, N − 1] ⊂ N.
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The corresponding results for local powers of δL(Ma), δR(Ma) and Nu(Ma) denoted γL, γR and γNu
respectively are presented in the figure 2.16. For a comprehensive comparison the exponents correspond-
ing to the scaling laws for Nusselt number from numerical simulations, Hagstrom and Doering rigorous
approach and piecewise SDP are also presented in the same figure.
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Figure 2.16: Scalings of an upper bound on Nusselt number and δL(Ma) (top) and δR(Ma) (bottom).

First of all, it can be clearly seen that the exponents for Nu(Ma) and δL(Ma) change synchronously
which reinforces our suggestion that the scaling of Nusselt number is determined by the scaling of the
left part of τ ′ profile. They oscillate around 0.245 and 0.253 respectively at Marangoni numbers 104 ≤
Ma . 3.5 × 105, but as Ma = 3.5 × 105 is passed, a continuous increase of γL and γNu can be observed
at each subsequent Marangoni number. We suspect that γNu approaches the exponent 2/7 corresponding
to the Hagstrom and Doering rigorous upper bound. The similar behaviour can be seen for γR. It
oscillates around 0.34 for Ma . 3.5 × 105 and suddenly jumps to approximately 0.54 for subsequent
higher Marangoni numbers.

The explanation of this phenomenon can be easily obtained if we look at the ground state eigenvalues
shown in the figure 2.17. As expected, a critical wavenumber k = 3 is present for all Marangoni numbers
being considered. What is more interesting, the second critical wavenumber appears at Ma ≈ 3.5× 105

and, therefore, causes the significant change in γL, γR and γNu which we see in the figure 2.16. In fact,
the exponents oscillations would continue in a similar fashion if additional wavenumbers were merely not
taken into consideration. Since high wavenumbers affect only the right part of τ ′ profile as we have already

29



shown in the previous sections, we can assert that the growth of γL and, consequently, γNu is triggered
by the jump in γR.
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Figure 2.17: Ground state eigenvalues.

It can be also seen from the figure 2.17 that instead of a pair of higher critical wavenumbers we have
the single second critical wavenumber. Moreover, it appears at much higher Marangoni numbers (Ma
& 3.5 × 105) than in the piecewise SDP case (Ma & 5 × 104). Furthermore, it can be observed that as
the second critical wavenumber is passed, all eigenvalues converge to some value (≈ 0.021) as k grows
that resembles the picture we saw in the SDP case, but here the convergence is more clear and there is
no evidence of the third critical wavenumber. The procedure of finding of the second critical wavenumber
is the same as in the SDP case: we solve an optimization problem for a single wavenumber k = 3 and
if there are negative ground state eigenvalues, we repeat calculations taking into consideration only the
lowest minimum ground state eigenvalue which makes all other ground state eigenvalues positive.

2.7 Limitations of numerical solutions

As one can note from (2.27), kmax grows as Ma1/2 which means that even for Ma= 4× 106 we cannot be
confident that our solution is feasible for all wavenumbers because we have to check k up to kmax ≈ 800.
However, fk(z) cannot be even accessed (in terms of Matlab functions) when k & 360. In other words,
important features of fk(z) are so tiny at high k that it is hard to represent numerically. Perhaps, it is
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possible to rearrange terms in fk(z) and expand them in exponent functions or power series in a nested
form that would not include arithmetic operations with both very small numbers close to machine epsilon
and relatively large ones. This approach has not been employed, but it may allow to increase significantly
available k.

However, we also observe that the optimal profiles in both numerical approaches are sensitive to
the fine features of fk(z) and we thus want our solution to capture these features which means that
we need to increase constantly the number of Legendre coefficients and the mesh density as Marangoni
number increases because otherwise our solution is not reliable because a scaling law at very large Ma is
extremely sensitive to the tiny features of τ ′. It was observed that even for 200 Legendre coefficients a
solution requires significant amount of time even for the modest number of wavenumbers being considered.

These issues together significantly limit our numerical capabilities because we always risk to fall into
one of the following problems:

1. round-off errors of finite arithmetic;

2. impossibility to consider necessary fk(z);

3. getting result which is not feasible (if we ignore very high k);

4. extremely slow convergence to solution.
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Analysis of self-similar parametrized profile

3.1 Qualitative understanding of optimization problem

Before proceeding into details, we shall reformulate the objective function in order to get more under-
standing of behaviour that we observe in numerics. If we apply a boundary condition τ(0) = 0 to the
(1.34), we obtain

1

Nu
≥ −
ˆ 1

0

(
τ ′2 + 2τ ′

)
dz (3.1)

and therefore completing the square and inversing the expression at both sides gives

Nu ≤ 1

1−
´ 1

0 (τ ′ + 1)2 dz
(3.2)

provided that
´ 1

0 (τ ′ + 1)2 < 1.
Thus, our objective is to minimize the expression on the right-hand side of the inequality (3.2) which

is exactly the same as the requirement to minimize the value of the functional

I[τ ′] :=

ˆ 1

0

(
τ ′ + 1

)2
dz. (3.3)

The stationary point of I[τ ′] is τ ′(z) = −1 for all z which gives the minimum possible bound Nu ≤ 1.
However, we have to impose integral inequality constraints stated in (1.38) that eventually gives us a
profile observed in the SDP results. As shown in the figure 2.7, at both sides of this profile the value of τ ′

is equal to -1. As we remember from the figure 2.9, fk(z) ≈ 0 near z = 0 and z = 1, so the sign-indefinite
term in the integral inequality is negligible compared to the positive terms at the values of z close to
z = 0 and z = 1. Therefore, we can argue that the constraint is not affected by τ ′ near z = 0 and z = 1
which finally gives τ ′(0) = τ ′(1) = −1 observed in the SDP results. In other words, τ ′ always tends to
−1, but the integral constraint pushes it upward.

3.2 Parametrization of background profile

In the light of numerical results, it was proposed in [21] that the parametrization of background profile
employing the property of self-similarity could be considered in order to capture the interaction between
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two parts of profiles. Namely, the following form of parametrization was suggested

τ ′(z) =


f(zMaδ), 0 ≤ z ≤ Ma−δ,
0, Ma−δ ≤ z ≤ 1−Ma−γ ,
g((1− z)Maγ), 1−Ma−γ ≤ z ≤ 1.

(3.4)

Boundary conditions on f(s) and g(s) are deduced from our previous analysis of the objective function
and numerical results. On the one hand, at z = 0 and z = 1 profile τ ′ must equal to −1 from the argument
given in the previous section which gives a boundary condition f(0) = g(0) = −1. On the other hand,
we saw in numerical results that the left and right parts of τ ′ tend to zero as z approaches the middle of
profile. We therefore expect that a boundary condition f(1) = g(1) = 0 must be satisfied.

An important note must be taken about the structure of this parametrization. As it can be seen, both
f(zMaδ) and g((1−z)Maγ) are compressing as Ma increases assuming that δ and γ are positive. However,
these functions does not scale in a vertical direction, i.e. ||f ||∞ and ||g||∞ are constant and independent
on Ma. Such a behaviour may be correct for the case of g((1− z)Maγ) because we indeed observe a lack
of steady scaling of the pick of the right part of τ ′ profile, but the left part’s pick scales with respect to
Marangoni number in a quite stable and predictable manner. At the moment, it is not obvious whether
this property of τ ′ profile crucial or not, but we should bear in mind that it may affect the power laws
being sought.

When the parametrized profile (3.4) was applied to the infinite-dimensional optimization profile (1.38),
an upper bound on Nusselt number was expressed in the form of a scaling law

Nu < O
(
Mamin{δ,γ}

)
. (3.5)

It is also known from [21] that when the parametrized profile is applied to the full integral inequality
as stated in (2.3), rearranging the integral terms and bounding the resulting integrals by Cauchy-Schwartz
inequalities give a new algebraic inequality

− ck ≥
1

2

(
Ma

1−7δ+γ
2 ca + Ma

1−2γ
2 ||bk||∞

)2
(3.6)

where ca ∈ R is a constant depending on the norm of f(s) and already discussed approximation of fk(z)
near z = 0 and bk, ck are defined as follows

bk(t) =

ˆ 1

(1−t)Maγ
g(s)fk(1− sMa−γ)ds, 1−Ma−γ ≤ t ≤ 1, (3.7)

ck = bk(1) =

ˆ 1

0
g(s)fk(1− sMa−γ)ds. (3.8)

Likewise the original integral constraint, the new inequality has to be satisfied for all 1 ≤ k < kmax where
kmax is defined as in (2.27).

From the scaling law (3.5) we can observe that the lowest asymptotic upper bound on Nusselt number
is obtained when either δ or γ are minimized subjected to (3.6). This leads to an optimization problem
in the following form

min
δ,γ

min{δ, γ} (3.9)

subject to − ck ≥
1

2

(
Ma

1−7δ+γ
2 ca + Ma

1−2γ
2 ||bk||∞

)2
for all 1 ≤ k < 0.4Ma1/2. (3.10)
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In this chapter we concentrate our attention on this optimization problem without looking at the
problem of satisfying condition Nu ≥ 0 which also arises in [21] and has to be eventually addressed.

3.3 Attempts to satisfy new inequality

Our purpose is to retrieve a dependence of ck and ||bk||∞ on Marangoni number. Being done this, it is
merely an algebraic and calculus task to determine appropriate constants to satisfy the inequality (3.6).
Indeed, imagine that the following expressions correct for all large enough Ma and necessary k have been
found

−ck ≥ ĉO(Mam), (3.11)

||bk||∞ ≤ b̂O(Man). (3.12)

Then, the inequality (3.6) becomes(
Ma

1−7δ+γ
2

O(Mam)

ca

ĉ1/2
+

Ma
1−2γ

2 O(Man)

O(Mam)

b̂

ĉ1/2

)2

≤ 2 (3.13)

and may be satisfied if δ and γ are found such that

lim
Ma→∞

Ma
1−7δ+γ

2

O(Mam)
is finite, (3.14)

lim
Ma→∞

Ma
1−2γ

2 O(Man)

O(Mam)
is finite, (3.15)

which prevents blow-up of the left-hand side of the inequality. Constants ca, ĉ, b̂ depend on the norms of
f(s) and g(s) and, thus, can be appropriately adjusted to make an algebraic inequality satisfied.

Before proceeding further and speculating about the form of g(s), we should note that there is an
inevitable condition on ck coming directly from the inequality (3.6): ck must be non-positive for all
k ≤ kmax and for all large enough Ma. As fk(1−sMa−γ) is known to be non-positive for any k,Ma, γ ≥ 0
on s ∈ [0, 1], this condition implies that g(s) must be positive at least for some s ∈ [0, 1]. However, we
have a boundary condition g(0) = −1 that immediately gives a conclusion that g(s) must change sign at
least once. Exactly this behaviour of g(s) can be observed from the piecewise SDP results: the right part
of τ ′ profile is mainly positive, but as z → 1, τ ′ becomes negative and finally reaches τ ′(1) = −1. Hence,
we can reasonably assume that there is only one point scr ∈ [0, 1] where g(s) changes its sign such that

g(s) < 0 if s ∈ [0, scr], (3.16)
g(s) ≥ 0 if s ∈ (scr, 1]. (3.17)

However, such a general case of g(s) is quite difficult to consider because of the norm ||bk||∞. Moreover,
there is a hidden problem in ck when sign-indefinite g(s) is used. To show it, divide the integral (3.8) into
positive and negative parts:

ck =

ˆ scr

0
g(s)fk(1− sMa−γ)ds+

ˆ 1

scr

g(s)fk(1− sMa−γ)ds. (3.18)
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Since fk(1− sMa−γ) concentrates near s = 0 as k increases, it can be roughly said that for any sf ∈ [0, 1]
we can find such k that fk(1− sMa−γ) ≈ 0 for all s > sf . Therefore, it is always possible to find such kcr
that the second integral in (3.18) will be negligible compared to the first one. Hence, only the positive
part of ck remains which means that −ck will be negative for all k > kcr and (3.6) cannot be satisfied. It
means that one has to take only such g(s) that kmax < kcr.

In contrast, a positive g(s) is much easier to treat because in this case ||bk||∞ = ck and the problem
described above automatically disappears. We will consider this form of g(s) expressed as g(s) = G where
G is some positive constant assuming that the boundary layer [0, scr] is infinitesimally small, i.e. scr → 0,
which allows to satisfy the boundary condition. One can note that this form of the right part is the same
as in the discontinuous optimization.

Then, ck becomes an integral of fk

ck = G

ˆ 1

0
fk(1− sMa−γ)ds (3.19)

and recalling that ||bk||∞ = ck for this choice of g(s), the inequality (3.6) transforms to(
Ma

1−7δ+γ
2

|ck|1/2
ca

G1/2
+ Ma

1−2γ
2 |ck|1/2G1/2

)2

≤ 2. (3.20)

It is now essential to consider the behaviour of |ck| for a range of k. For k close to k ≈ Maγ a function
fk(1− sMa−γ) can be quite precisely approximated by fourth-order Taylor expansion about s = 0:

fk(1− sMa−γ) = −H1(k)kMa−γs+
1

2
k2Ma−2γ − 1

6
H3(k)k3Ma−3γ +

1

12
k4Ma−4γ +O(s5) (3.21)

where H1(k) := sinh2(k)−k2
sinh(2k)−2k and H3(k) := 3 cosh(k)22−3−k2

sinh(2k)−2k are virtually independent on k when high k are
considered, so they are taken to be constant in the current context. Considering for convenience k = Mam

we can rewrite it as

fk(1− sMa−γ) ≈ −H1(k)Mam−γs+
1

2
Ma2(m−γ)s2 − 1

6
H3(k)Ma3(m−γ)s3 +

1

12
Ma4(m−γ)s4 (3.22)

and immediately see that for m = γ the function fk(1 − sMa−γ) and, consequently, |ck| do not depend
on Ma, so |ck| = const at k = Maγ . Moreover, it can be shown by ordinary calculus that maxm |ck| also
happens when m ≈ γ which leads us to an important result that supk |ck| = |ck|k≈Maγ = C where C is
independent on Ma. Therefore, we modify the inequality (3.20):(

Ma
1−7δ+γ

2

|ck|1/2
ca

G1/2
+ Ma

1−2γ
2 C1/2G1/2

)2

≤ 2. (3.23)

On the other hand, for low k the function fk(1 − sMa−γ) behaves linearly and, therefore, can be
approximated by merely first-order Taylor expansion

fk(1− sMa−γ) = −H1(k)Mam−γs+O(s2) (3.24)
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and then
|ck| ≈ Mam−γ . (3.25)

Substituting it into inequality gives(
Ma

1−7δ+2γ−m
2

ca

G1/2
+ Ma

1−2γ
2 C1/2G1/2

)2
≤ 2. (3.26)

As this inequality has to be satisfied for all k up to kmax ∝ Ma1/2, the following optimal values of δ and
γ are obtained

δ =
2

7
, (3.27)

γ =
1

2
. (3.28)

Since Nu < O
(
Mamin{δ,γ}

)
, Nusselt number thus scales as Nu ∝ Ma2/7 which exactly coincides with the

power law of Hagstrom and Doering. The main problem seems to be the fact that supk |ck| does not scale
with respect to Marangoni number for a necessary range of wavenumbers which forces us to set γ = 1/2.
This result immediately leads to δ = 2/7 because of the linear behaviour of fk(1 − sMa−γ) for small k
that a priori have to be taken into account. Non-constant positive g(s) will not change this behaviour
because the dependence on Ma is localized in fk(1− sMa−γ).

This analytical result is supported by the numerical results obtained using discontinuous piecewise
optimization. The same profile has been investigated there and we indeed observed that when the second
critical wavenumber appears at Ma ≈ 3.5× 105 the scaling of the right part of profile suddenly becomes
γ ≈ 1/2 and synchronically the scaling of the left part starts converging to δ ≈ 2/7.
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Discussion and conclusions

4.1 Improvement of parametrized profile

In the previous chapter we have considered the simplest case of g(s), namely, when it is positive at
s ∈ [0, 1]. However, using positive g(s) we neglect a negative part of the right boundary layer assuming
that it is too small to be considered. Comparison of the SDP results and discontinuous optimization results
along the analysis of the positive g(s) shows that the negative boundary layer may play a significant role
in the power law for an upper bound on Nusselt number. Considering a function g(s) having positive and
negative parts assumes that ||bk||∞ 6= |ck| and, therefore, recalling that ck = bk(1) the inequality (3.6)
can be rewritten in the following form(

Ma
1−7δ+γ

2
ca

bk(1)1/2
+ Ma

1−2γ
2
||bk||∞
bk(1)1/2

)2

≤ 2 (4.1)

where bk(1) has to be negative.
One could try to analyse the behaviour of the quantity ||bk||∞

bk(1)1/2
which in general should scale with

respect to Marangoni number even for wavenumbers of order k ∝ Maγ that appeared to be crucial in the
case of positive g(s). If so, it will allow to make optimal γ smaller than 1/2 which should result in a
smaller δ and, consequently, a better scaling law for Nusselt number.

Another important aspect which is not addressed by the given form of the parametrized profile is a
vertical scaling of f(s). It can be clearly seen from τ ′ profiles obtained via the SDP that the pick of the
left part of profile grows steadily as Marangoni number increases. Even though the positive part of it
looks negligible compared to the large negative part, it becomes sufficiently large when Marangoni number
reaches the value of 106 and, thus, may start playing an essential role at subsequent Marangoni numbers.

4.2 Improved upper bound for critical wavenumbers

Critical wavenumbers observed in both numerical studies are significantly lower than ones estimated by
(2.27). For example, we saw in the analysis of the SDP results that the second critical wavenumber scales
with respect to Marangoni number as kcr ∝ Ma1/10. Similar scaling was observed in the discontinuous
piecewise optimization, whereas the analytically estimated maximum critical wavenumber scales as kmax ∝
Ma1/2. This dramatic difference forces us to include into the analytical analysis wavenumbers that worsen
the resultant scaling law. If it was possible to consider k up to kcr ∝ Ma1/10, then the problem with
constant supk |ck| might disappear. Since |ck| scales as |ck| ∝ Ma−γ at low wavenumbers, it would allow to
find an optimal scaling for the right part of profile γ = 1/3 which automatically yields a desirable scaling
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for the left part and at the same time for Nusselt number δ = 5/21. This result looks very optimistic
because it almost exactly coincides with the power law (1.2) observed from the simulations of Boeck and
Thess in [10].

4.3 Variational approach

There is an inevitable problem inherent in the approach considered in [21]. At some point of derivation
it is necessary to use Cauchy-Schwartz bounds on integrals in order to transform the integral spectral
constraint to the algebraic inequality (3.6). Since the left part of τ ′ profile is negative, whereas the right
part of τ ′ is presumably mainly positive, it might be the case that when Cauchy-Schwartz bounds are
imposed on integrals involving f(s) and g(s), an interplay between them is lost. In [21] some kind of such
an interaction between these parts is preserved via the interaction between powers δ and γ and manifests
itself in the first term in the inequality (3.6). However, there is no guarantee that this interaction is
sufficient for deriving a better power law.

The common approach for infinite-dimensional optimization problems is a variational technique where
Euler-Lagrange equations are derived for a corresponding problem. As it was discussed in the first section,
a background profile τ ′(z) can be in fact redefined as a function with fixed endpoints: τ ′(0) = τ ′(1) = −1.
Then, the Fréchet derivative of the objective functional B[τ ′] in (1.38) with respect to τ ′ can be easily
calculated (in this context τ ′ is treated as merely a function). It is also necessary to take into consideration
the constraints which is usually done by Lagrange multipliers. Euler-Lagrange equations for Qτ,k[u] may
produce eigenvalue problems for the underlying linear operators and we could require their ground state
eigenvalues to be zero by means of Lagrange multipliers.

Unfortunately, there are two issues in this approach. First of all, it is not clear how to do it for
the constraints Qτ,k[u] because of the presence of u(1) in (2.3). One could eliminate it by applying a
substitution φ := uu(1) which leads to a modified integral inequality

Qτ,k[φ] =

ˆ 1

0

[
φ′2 + k2φ2 − 2Maτ ′fk(z)φ

]
dz ≥ 0 (4.2)

but in this case Qτ,k[φ] is no longer in the quadratic form. The second issue is related to the fact that we
cannot impose the requirement for ground state eigenvalues of Qτ,k[u] to be zero for all k because almost
all of them in fact must be merely positive.

However, an additional insight into the problem may be gained if we consider every constraintQτ,k[φ] ≥
0 as a separate variational problem. One could minimize Qτ,k[φ] and obtain and expression for φmin[τ ′]
which is again a functional. Substituting it back into Qτ,k[φ], we obtain a functional Qk[τ ] which is
subjected to be non-negative and can be analysed for different background profiles.

Since φ has fixed endpoints φ(0) = 0, φ(1) = 1, the Euler-Lagrange equation for minimizing Qτ,k[φ] is

φ′′ − k2φ = Maτ ′fk. (4.3)

One may consult [14] where the variational machinery is demonstrated for a similar problem.

4.4 Does a better scaling law exist?

This work is concluded by a simple question: is it possible to obtain a better scaling law for an upper
bound on Nusselt number from the variational problem (1.38) stated in the introduction?
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Despite the fact that an additional understanding of the problem of power laws for Nusselt number
has been acquired during this work, it is still far from obvious whether it is possible to prove analytically
an existence of better scaling or not. Our attempts to simplify the form of the background profile τ ′ at
the present time lead to the results coinciding with the rigorous upper bound of Hagstrom and Doering.
The results of the full piecewise semidefinite optimization are more optimistic and produce the power law
Nu ∝ O(Ma0.252) for a range of Marangoni number from Ma4 to Ma6 where the exponent is significantly
better than 2/7. However, the existing numerical limitations do not allow to consider higher Marangoni
numbers as well as higher wavenumbers. As one could notice, the pair of additional critical wavenumbers
appears “out of the clear blue sky” and, even though we did not see any evidence, it is still not guaranteed
that the fourth wavenumber of order k ∝ O(103) does not exist for, say, Ma = 107. Such an additional
critical wavenumber may trigger an exponent of the corresponding power law to jump to 2/7 as it happens
in the discontinuous piecewise optimization.

On the other hand, assuming that the thinking above is incorrect and the power law will persist
for higher Marangoni numbers and presumably higher-order critical wavenumbers, we can consider the
numerical results from the semidefinite optimization as quite reliable, because even though they may be
inaccurate, any improvement of accuracy (increasing the number of Legendre coefficients, refining the
mesh, etc.) will probably only refine the accuracy of the exponent and pre-factor, but not change the
power law dramatically. Therefore, there must be a way to prove an existence of a better scaling for an
upper bound on Nusselt number.

To motivate future researches, one optimistic point should be added. The optimal background profile
τ shown in the figure 2.6 is qualitatively exactly the same as a horizontally and time-averaged temperature
profile obtained in the numerical simulations of Boeck and Thess (figure 2 in [10]). It can be noted from
their work that all minor features of the temperature profile disappear as Marangoni number increases
above Ma = 105 leaving only distinctive features of the left and right boundary layers which were dis-
cussed in detail in the present work. Therefore, the variational problem (1.38) formulated by means the
background profile method produces the profiles τ such that they seem to capture all important physical
features of the underlying flow. As a result, we may expect that the minimization of an upper bound on
Nusselt number may indeed produce the scaling law for Nusselt number.
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