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The nonlinear robustness of laminar plane Couette flow is considered under the action
of in-phase spanwise wall oscillations by computing properties of the edge of chaos,
i.e. the boundary of its basins of attraction. Three measures are used to quantify the chosen
control strategy on laminar-to-turbulent transition: the kinetic energy of edge states (local
attractors on the edge of chaos), the form of the minimal seed (least energetic perturbation
on the edge of chaos), and the laminarization probability (the probability that a random
perturbation from the laminar flow of given kinetic energy will laminarize). A novel
Bayesian approach is introduced to enable the accurate computation of the laminarization
probability at a fraction of the cost of previous methods. While the edge state and the
minimal seed provide useful information about the dynamics of transition to turbulence,
neither measure is particularly useful to judge the effectiveness of the control strategy
since they are not representative of the global geometry of the edge. In contrast, the
laminarization probability provides global information about the edge and can be used
to evaluate the control effectiveness by computing a laminarization score (the expected
laminarization probability) and the associated expected dissipation rate of the controlled
flow. These two quantities allow for the determination of optimal control parameter values
subject to desired constraints. The results discussed in the paper are expected to be
applied to a wide range of transitional flows and control strategies aimed at suppressing or
triggering transition to turbulence.

Key words: transition to turbulence, nonlinear instability, instability control

1. Introduction

Many shear flows feature a linearly stable laminar flow that is susceptible to transition
to turbulence via a finite-amplitude instability (Orszag 1971; Romanov 1973; Schmid &
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Figure 1. Sketch of phase space, illustrating the edge of chaos as a thick black line, turbulence located by the
shaded red region, and the laminar state as a fixed point. An attractor along the edge of chaos, called the edge
state, is represented together with its one-dimensional unstable manifold in thick coloured arrows: the red side
sends perturbations to turbulence, while the blue side sends them to the laminar flow. The minimal seed is
indicated, as well as, in dashed blue lines, the perimeter around the laminar flow on which perturbations have
the same energy as the minimal seed. The thin lines show two trajectories starting from nearby positions: the
red one eventually transitions to turbulence, while the blue one eventually laminarizes.

Henningson 2001; Meseguer & Trefethen 2003; Barkley 2016) whose control is often of
prime interest (Hof et al. 2010; Kühnen et al. 2018a,b; Scarselli, Kühnen & Hof 2019).
Among these, plane Couette flow, i.e. the viscous flow between two parallel walls moving
in opposite directions, is one of the most well studied examples. In this configuration,
both numerical and experimental studies confirm that turbulence can be sustained down to
Reynolds number values as low as 325 ± 10 (Dauchot & Daviaud 1995; Duguet, Schlatter
& Henningson 2010; Shi, Avila & Hof 2013; Couliou & Monchaux 2015), which implies
that a structure must exist in the phase space that separates decaying initial conditions
from transitioning ones. This structure, named the edge of chaos (Itano & Toh 2001;
Skufca, Yorke & Eckhardt 2006), is key to understanding the nonlinear route to turbulence
and to designing control strategies for delay of transition. Figure 1 shows a simplified
representation of phase space to highlight some characteristics of the edge of chaos.

In addition to possessing a convoluted structure interacting strongly with turbulence
(Chantry & Schneider 2014), the edge of chaos displays two objects that have received
extensive attention in the literature: edge states and the minimal seed. Edge states are local
attractors within the edge of chaos (Schneider et al. 2008; Duguet, Schlatter & Henningson
2009; Schneider, Marinc & Eckhardt 2010). These can be fixed points, periodic orbits
or even chaotic sets, and are characterized by the fact that they have only one unstable
direction. A growing body of research suggests that edge states act as important mediators
during the laminar-to-turbulent transition (Cherubini et al. 2011; Khapko et al. 2016;
Kreilos et al. 2016). It is thus tempting to choose the edge state energy as an indicator
of the nonlinear robustness of the laminar flow, and to monitor its value when controlling
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the flow to either reduce or enhance the robustness of the laminar flow. Such a perspective
was considered by Rinaldi, Schlatter & Bagheri (2018), who found that the edge state
energy may either increase or decrease (i.e. the related fixed point may shift away from or
towards the laminar fixed point) in response to the introduction of non-uniform viscosity
in plane channel flow. As a consequence, they suggested that the basin of attraction of
the laminar flow may grow or shrink in the vicinity of the edge state, making the laminar
flow either more or less robust to finite-amplitude perturbations. The impact of control
strategies on edge states is not guaranteed, however. The addition of polymer to Poiseuille
flow, for example, does not impact the properties of its edge states (Xi & Graham 2012).
Further, the edge state and its energy are only local measures of the edge of chaos and do
not inherently contain information about the global structure of the edge or the likelihood
of transition. This implies that the edge state is unlikely to act as a robust quantifier of the
relative volume of the basin of the laminar solution.

On the other hand, a direct measure of the nonlinear robustness of the laminar flow
is provided by the minimal seed, the initial condition along the edge of chaos that is the
closest energetically to the laminar flow (Pringle, Willis & Kerswell 2012; Cherubini & De
Palma 2013; Kerswell 2018). Energetically lower initial conditions are all contained within
the basin of attraction of the laminar flow, while there exist energetically higher initial
conditions that trigger turbulence (for a detailed discussion, see Kerswell 2018). There is
emerging evidence that the minimal seed represents the most likely transition scenario for
some hydrodynamic systems, as it may be related to an instanton trajectory in the large
deviation theory of noisy systems (Lecoanet & Kerswell 2018). Motivated by the fact that
the minimal seed is the smallest-energy perturbation from the laminar flow that can trigger
turbulence, Rabin, Caulfield & Kerswell (2014) tuned control parameters in wall-oscillated
plane Couette flow to maximize its kinetic energy as a way to improve the robustness of the
laminar flow. However, minimal seeds have a very specific spatial structure, which allows
them to most efficiently trigger turbulence, and as such it is likely that the structure of the
edge near to the minimal seed is somewhat cusped, with the minimal seed lying at the end
of a narrow intrusion of the turbulent side of the edge into the basin of attraction of the
laminar flow. Because of this, it is unlikely that changes in the energy of the minimal seed
will have a significant impact on the overall size and shape of the basin of attraction of the
laminar flow, and hence its robustness to a generic perturbation.

To circumvent the problems that arise when considering only local properties of the
edge, an alternative perspective on the assessment of the robustness of the laminar flow
has been proposed recently. Instead of focusing on particular invariant objects of the
edge of chaos, it characterizes the basin of attraction of the laminar flow globally via the
laminarization probability, i.e. the probability that a random perturbation of the laminar
flow decays as a function of its kinetic energy (Pershin, Beaume & Tobias 2020). The
laminarization probability measures the relative volume of the basin of attraction of the
laminar state, thereby providing information on the global structure of the edge of chaos
rather than looking at its local features. Pershin et al. (2020) used it successfully to quantify
the nonlinear stability of laminar plane Couette flow at several values of the Reynolds
number and under the action of spanwise wall oscillations. However, the calculation of the
laminarization probability in Pershin et al. (2020) required an extremely large number of
simulations to be performed to achieve statistically converged results. Here, we introduce
a novel Bayesian approach to calculating the laminarization probability that requires
substantially fewer simulations to provide useful results. As such, a significantly larger set
of control parameters in plane Couette flow under the action of spanwise wall oscillations
may be considered, in order to assess the performance of this particular turbulence control
measure.
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In this paper, we compute edge states, minimal seeds and laminarization probabilities
to study the nonlinear robustness of plane Couette flow in the presence of spanwise
wall oscillation, and determine the conditions that minimize the flow sensitivity to
finite-amplitude perturbations. In doing so, we shed light on the connection between these
flow features and the assessment of control strategies. The next section is devoted to the
set-up of the problem. Section 3 discusses the use of the edge state and minimal seed
energies as quantifiers of the control efficiency. Section 4 provides a detailed explanation
and verification of the new Bayesian procedure used to estimate the laminarization
probability, followed in § 5 by the results obtained by the application of this procedure.
These results are augmented by the introduction of two scalar criteria that can be used to
quantify the efficiency of control strategies: the laminarization score, which represents the
probability that a perturbation drawn from a given energy distribution laminarizes; and
the expected dissipation rate, which quantifies the expected energy required to produce the
controlled flow. The paper concludes with a discussion in § 6.

2. Plane Couette flow under spanwise wall oscillations

We consider plane Couette flow, i.e. the flow driven by two infinite plates separated by a
gap 2h and moving in opposite directions at speed Uwall. We subject the flow to sinusoidal
in-phase wall oscillations in the spanwise direction with amplitude Uwall Wosc, frequency
Uwallω/h, and phase φ. After non-dimensionalization, the Navier–Stokes equation and the
incompressibility condition read

∂tu + (U · ∇)U = −∇p + 1
Re

∇2u +
(

1
Re
∂yyW − ∂tW

)
ez, (2.1)

∇ · u = 0, (2.2)

where Re = Uwall h/ν is the Reynolds number, ν is the kinematic viscosity, p is the
pressure, and ez is the unit vector in the spanwise direction. In writing these equations,
we have used the usual decomposition of the full flow field U into the laminar solution
U lam = [y, 0,W( y, t)] and the incompressible perturbation, or turbulent velocity, u such
that U = u + U lam. The presence of spanwise wall oscillations modifies the laminar
solution of plane Couette flow by adding a time-dependent spanwise component W( y, t):

W( y, t) = Wosc

cosh 2Ω + cos 2Ω

[[
coshΩy+ cosΩy−+ coshΩy− cosΩy+

]
sin(ωt + φ)

+ [sinhΩy+ sinΩy−+ sinhΩy− sinΩy+
]

cos(ωt + φ)
]
, (2.3)

where Ω = √
ω Re/2 and y± = y ± 1. More details can be found in the work of Rabin

et al. (2014) and in Appendix A. This decomposition allows the laminar solution to absorb
the (time-dependent) no-slip boundary condition U(x,±1, z, t) = [±1, 0,Wosc sin(ωt +
φ)] in such a way that the incompressible perturbation satisfies homogeneous boundary
conditions in y. We consider a periodic domain in the streamwise direction (period
Γx = 4πh) and in the spanwise direction (period Γz = 32πh/15), and fix the Reynolds
number to Re = 500 hereafter, a value significantly larger than that necessary to sustain
turbulence: Re > Rec = 325 ± 10 (Dauchot & Daviaud 1995; Shi et al. 2013). These basic
flow conditions are identical to those in Pershin et al. (2020).

We use a suitably modified version of Channelflow (Gibson 2014) to numerically
integrate (2.1) and (2.2) for the perturbation u. The streamwise and spanwise directions are
discretized using Nx = 32 and Nz = 34 Fourier coefficients, and the wall-normal direction
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Figure 2. Time-evolution of the spanwise component of the laminar flow (blue curves) in the presence of
in-phase wall oscillations for Wosc = 0.3, ω = 1/64 and Re = 500 represented at four different phases of
the oscillation, where T = 2π/ω is the oscillation period. The orange and black dashed curves denote the
Stokes boundary layers associated with the bottom and top walls, respectively, and defined by the following
expressions: W( y, t) = Wosc e−Ω ỹ sin(ωt −Ω ỹ), where Ω = √

ω Re/2, ỹ = y + 1 for the bottom wall, and
ỹ = 1 − y for the top wall. For these parameter values, the depth of penetration is δ ≈ 0.5.

is discretized using Ny = 33 Chebyshev coefficients (Pershin et al. 2020), yielding
approximately 1.08 × 105 degrees of freedom. A third-order semi-implicit backward
differentiation scheme with time step 	t = 1/Re is used to advance the flow in time.

Modifying the plane Couette flow configuration by adding wall oscillations creates
Stokes boundary layers consisting of transverse waves emanating from the top and bottom
walls and travelling a distance δ = 1/Ω towards the centre of the domain. For a small
enough depth of penetration (δ � 0.5) or, equivalently, large enough frequency (ω � 1/64
for Re = 500), the spanwise flow can be thought of as a combination of two such boundary
layers, as illustrated in figure 2 for an oscillation amplitude Wosc = 0.3.

It is therefore reasonable to expect that the effect of the oscillating walls will propagate
a depth δ into the domain, thus the interior of the flow will not be affected by wall
oscillations when the frequency is too large, so that efficient control via in-phase spanwise
wall oscillations requires ω � 1. Indeed, ω = 1 corresponds to negligible depths of
penetration: δ ≈ 0.06 for Re = 500. On the other hand, the wall oscillation period should
be at most comparable to the typical time that it takes for an initial condition to transition
to turbulence, which is O(102) in this domain (Pershin et al. 2020), corresponding to
ω � 1/128. We thus consider ω ∈ [1/128; 1], together with Wosc ∈ [0; 0.5].

From an engineering standpoint, the addition of spanwise oscillations to plane Couette
flow requires increased energetic input to counter viscous dissipation and maintain the
flow. Following ideas expressed by Rabin et al. (2014), the necessary energy corresponds
to the dissipation rate

ε(Wosc, ω) = ω

4kπΓxΓz Re

∫ 2kπ/ω

0

∫ Γx

0

∫ 1

−1

∫ Γz

0
|∇ × (U lam + u)|2 dz dy dx dt, (2.4)

where time-averaging is performed over k periods of wall oscillations depending on the
length of the available time series. For the laminar flow, this formula reduces to

εlam(Wosc, ω) = 1
Re

[
1 + W2

oscΩ

2
× sinh(2Ω)− sin(2Ω)

cosh(2Ω)+ cos(2Ω)

]
. (2.5)

In the absence of control, the dissipation rate for the laminar flow is εlam(Wosc = 0) =
1/Re. For Re = 500 and within the considered ranges for Wosc and ω, the dissipation rates
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Figure 3. Distribution of the turbulent kinetic energy E (blue) and the edge state kinetic energy (green; the
edge state will be discussed in detail in § 3.1) plotted as a function of frequency ω for amplitudes ranging from
Wosc = 0 to Wosc = 0.3. Red and blue dots denote the block maxima and minima as explained in the text. Thick
lines, dark bands and light bands denote the mean, interquartile range and interdecile range of the distributions,
respectively. The vertical dashed lines correspond to the reference frequency ω = 1/8.

can be well approximated by

εlam(Wosc, ω) = 1
Re

(
1 + W2

osc
√
ω Re

2
√

2

)
. (2.6)

Finally, the dissipation rate that is calculated according to (2.4) for a turbulent flow
realization will be referred to as εturb(Wosc, ω).

To further characterize the flow, we also define the turbulent kinetic energy

E = 1
2
〈u,u〉 = 1

2
||u||2 = 1

4ΓxΓz

∫ Γx

0

∫ 1

−1

∫ Γz

0
u · u dz dy dx. (2.7)

The mean, interquartile and interdecile ranges of the turbulent kinetic energy are shown
in figure 3 for amplitude values ranging from Wosc = 0.05 to Wosc = 0.3. For ω � 1, the
mean turbulent kinetic energy does not vary much with ω and is close to that observed
for the uncontrolled case Wosc = 0. Reducing the frequency of the forcing below ω = 1/2
leads to the decrease of the mean turbulent kinetic energy, which reaches a minimum for
ω = 1/16, except for Wosc = 0.3, where the minimal value of the mean turbulent kinetic
energy is obtained for ω = 1/8. Additionally, increasing the oscillation amplitude leads to
more rapid turbulence decay, and we did not obtain conclusive data for Wosc > 0.3. One
can also observe that, as we increase the forcing frequency beyond the minimizing value at
a given amplitude, the kinetic energy distribution becomes more spread, as shown by the
expanding interquartile and interdecile ranges and by the larger spread of the block extrema
obtained by dividing the time series into non-overlapping blocks of equal length (500 time
units in figure 3) and collecting global extrema for each of these blocks. This effect can
barely be observed for Wosc = 0.05 but is more pronounced for larger amplitudes.

The decrease of the mean turbulent kinetic energy as the frequency of the control is
increased towards the aforementioned optimum is accompanied with a reduced variation
across the domain of the averaged shear rate. Figure 4(a) shows how the shear stress of the
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Figure 4. (a) Time-averaged wall-normal shear rate associated with the streamwise velocity in the presence
of wall oscillations for Wosc = 0.3 and plotted for various frequencies ω. (b) Laminar (dashed) and turbulent
(solid) dissipation rates plotted as a function of frequency ω for amplitudes varying from Wosc = 0.1 to Wosc =
0.4. The results for Wosc = 0.5 are omitted because, at this amplitude, it was virtually impossible to sustain
turbulence for the necessary time duration to compute reliably the turbulent dissipation rate. In both plots,
dashed and solid black lines correspond to laminar and turbulent flows in the uncontrolled case (Wosc = 0),
respectively.

time-averaged streamwise turbulent velocity profile changes as a function of the frequency
for Wosc = 0.3. The wall-normal shear rate variations across the domain are minimal for
ω = 1/8, the same value that minimizes the turbulent kinetic energy (see figure 3).

Finally, the dependence of the turbulent dissipation rate εturb(Wosc, ω) on the control
parameters is shown in figure 4(b) and highlights the fact that, in general, either decreasing
the wall oscillation frequency or increasing the oscillation amplitude leads to a decrease
in the turbulent dissipation rate.

3. Scalar measures of the robustness of the laminar flow

3.1. Edge states
The edge of chaos is the manifold separating decaying initial conditions from those
transitioning to turbulence. Complete knowledge of this manifold would allow for the
determination of the relative state space volume occupied by the basin of attraction
of the laminar flow. Characterizing the laminar flow robustness can thus be achieved
via the exhaustive characterization of the edge of chaos. Unfortunately, the edge has
a highly complex structure (Skufca et al. 2006; Schneider, Eckhardt & Yorke 2007;
Chantry & Schneider 2014), and full characterization is virtually impossible to achieve.
To bypass this difficulty, the edge manifold is usually characterized by more accessible
measures such as edge states, which are local attractors on the edge of chaos, and the
minimal seed, which is the point on the edge of chaos that is closest to the laminar fixed
point.

We compute the edge states for control parameter values Wosc ∈ [0.05; 0.5] and ω ∈
[1/128; 1] using edge tracking (Skufca et al. 2006). Typical examples of the resulting edge
trajectories, represented by the turbulent kinetic energy, are shown in figure 5. The edge
states can be classified according to their dynamics. We find that edge states can take the
form of equilibria, periodic orbits, relative periodic orbits or chaotic objects depending
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on the control amplitude and frequency. We present this classification in figure 6(a) as
a function of the control parameter values. For large enough control frequencies, the
edge state invariably takes the form of a steady state, virtually identical to that in the
uncontrolled system (see figure 5a). Decreasing the frequency adds temporal variability to
the edge state, turning it into a periodic orbit (see figure 5b) and finally into a chaotic object
(see figure 5d). For the smallest amplitudes considered, Wosc = 0.05 and Wosc = 0.1,
we also observed that the edge state could take the form of relative periodic orbits for
frequencies between those associated with periodic orbits and chaotic edge states (see
figure 5c). The importance of time-dependent edge states for laminarization processes
is related to the possibility that they form homoclinic tangencies leading to a fractal
basin boundary (Robinson 1998; van Veen & Kawahara 2011; Budanur, Dogra & Hof
2019; Lustro et al. 2019). Transitions between the identified equilibria, periodic orbits and
relative periodic orbits may be continuous as a function of Wosc and ω, or result from
bifurcations; further refinement of the parameter space landscape to uncover a precise
scenario is beyond the scope of this work. Decreasing ω further yields steady edge states
as expected from the asymptotic regime produced when ω → 0.

To further characterize the dependence of the edge states on the control parameters, we
build the distribution of the edge state kinetic energy by taking the edge trajectories for the
time interval t ∈ [1000; 1000 + 2nπ/ω], where n denotes the number of periods of wall
oscillations taken into account (n = 2 for the smallest frequency ω = 1/128, and n � 4 for
larger frequencies; larger values of n do not modify the results significantly). The resulting
dependence of the mean edge state energy and its standard deviation on the amplitude
and frequency of the wall oscillations is shown in figure 6(b). Wall oscillation decreases
the mean edge state energy in the vast majority of the cases. Contrary to the turbulent
kinetic energy (see figure 3), the edge state energy tends to decrease as the frequency of
the forcing is decreased even when ω < 1/8, for most of the amplitude values. One can,
however, observe similarities between the behaviour of the kinetic energy of turbulent
flows and that of the edge state under control: increasing the control amplitude tends to
lower the kinetic energy associated with both distributions, implying that both objects (the
turbulent saddle and the edge state) are closer to the laminar state. We also further note that
the control frequency at which the edge state becomes unsteady is close to that associated
with the minimum of the averaged turbulent kinetic energy.

3.2. Minimal seeds
The minimal seed is the initial condition of smallest turbulent kinetic energy E =
Ec, which is on the edge manifold separating the basins of attraction of the laminar
and turbulent states. In practice, it is impossible to find the minimal seed exactly,
but instead approximations to it that lie on either side of the edge manifold may be
computed using techniques derived from nonlinear non-modal stability theory (Kerswell
2018). This involves solving iteratively a nonlinear energy optimization problem via a
direct-adjoint-looping algorithm, which yields solutions that are guaranteed only to be
locally optimal in terms of the closest approach of the edge manifold. However, minimal
seeds found in plane Couette flow using a variety of different approaches, and for a
variety of parameter values, all appear to share the same qualitative initial structure
and evolve according to similar dynamics (Monokrousos et al. 2011; Rabin, Caulfield &
Kerswell 2012; Cherubini & De Palma 2013; Duguet et al. 2013; Eaves & Caulfield 2015).
This lends confidence that these local minima may in fact be global minima, or that they
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Figure 5. Visualization of the edge tracking procedure for (a) Wosc = 0.4, ω = 1, (b) Wosc = 0.3, ω = 1/8,
(c) Wosc = 0.1, ω = 1/16, and (d) Wosc = 0.2, ω = 1/16. In each panel, the top plot shows the time-evolution
of the kinetic energy of the perturbation from the laminar flow used to get the edge tracking started (grey), of
trajectories associated with subsequent iterations of the algorithm (colours), and of the trajectory along the edge
(dashed black curve). The bottom plot of each panel shows the time-evolution of the xy-averaged kinetic energy
of the perturbation associated with the edge trajectories. The edge trajectories are found to approach edge
states that can be classified according to the dynamics of the perturbation from the laminar flow: equilibrium
(a), periodic orbit (b), relative periodic orbit (c), and chaotic trajectory (d), depending on the amplitude and
frequency of wall oscillations (see figure 6(a) for details). The periodic orbit in (b) and the relative periodic
orbit in (c) bear clear structural resemblance to the steady edge states obtained for larger control frequencies
(a), which in turn are virtually indistinguishable from the edge state in the uncontrolled system.

at least represent dynamically significant initial conditions. The minimal seed found here
for Wosc = 0 is also similar to these other plane Couette flow minimal seeds.

For ease of discussion, hereafter the phrase ‘minimal seed’ is used more loosely to refer
to a neighbouring state of the exact minimal seed that lies on the transitioning side of the
edge manifold; its turbulent kinetic energy is an upper bound on Ec. The turbulent kinetic
energy of the approximation that lies on the laminar side of the edge manifold provides a
lower bound on the (locally optimal) value of Ec; for the converged results presented below,
the difference in turbulent kinetic energy between the two approximations that bracket Ec
is 2.5 × 10−8, or at most 0.2 % of Ec. Unfortunately, two of the results below did not
converge (though the utility of the partial results is explained and shown below); it is well

941 A25-9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
59

.1
38

.2
16

.2
1,

 o
n 

27
 A

pr
 2

02
2 

at
 1

5:
03

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

2.
29

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.298


A. Pershin, C. Beaume, T.S. Eaves and S.M. Tobias

0.05 0.10 0.20 0.30 0.40 0.50

Wosc

2–7

2–6

2–5

2–4

2–3

2–2

2–1

20

21

22

22

23

24

2–6 2–4 2–2 20 24

ω

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E ed
ge

Wosc = 0
Wosc = 0.05
Wosc = 0.10
Wosc = 0.20
Wosc = 0.30
Wosc = 0.40
Wosc = 0.50

N/A

C

RPO

PO

EQ

ω

(b)(a)

Figure 6. (a) Classification of the edge states as equilibria (EQ), periodic orbits (PO), relative periodic orbits
(RPO) and chaotic trajectories (C) as a function of Wosc and ω. (b) Dependence of the mean edge state
energy Eedge and associated standard deviation (error bars) on the amplitude Wosc and frequency ω of the
wall oscillations. The edge state results are omitted for Wosc = 0.5, ω = 1/4, 1/8, 1/16, 1/32 in both (a,b)
since the control strategy suppresses turbulence almost completely at these parameter values.

known that the minimal seed optimization problem struggles to converge owing to the
sensitive dependence on initial conditions associated with the turbulent attractor (Pringle
et al. 2012; Rabin et al. 2012; Kerswell 2018), as do related optimization problems in
turbulence control (see e.g. Vishnampet, Bodony & Freund 2015). The convergence issue
is compounded further if the edge state itself is also a chaotic set (see the observations
of Eaves & Caulfield 2015), which is likely due to the exponential divergence of nearby
trajectories passing through the chaotic saddle that cause solutions to the adjoint equations
to diverge exponentially and provide sensitivities that are dominated by the chaotic saddle,
as discussed by Chung & Freund (2022). The two non-converged results in this work do
indeed have chaotic edge states (cf. figure 6a).

For Wosc /= 0, we perform a restricted search for the minimal seed, fixing the phase of
the wall oscillation to be φ = 0. A family of initial conditions may be found by searching
for minimal seeds at different values of φ, and the initial condition with the smallest
turbulent kinetic energy over all values of φ is the minimal seed for this system. By fixing
φ = 0, we instead find an upper bound for the minimum turbulent kinetic energy in this
family (since any particular value of φ produces an upper bound for the minimum across all
values of φ ∈ [0; 2π]). However, Rabin et al. (2014) found that for Re = 1000, the minimal
seed with φ = 0 is almost optimal across all values of φ, and that turbulent kinetic energies
for different values of φ do not vary much.

Minimal seeds were computed for Wosc = 0, 0.2 and 0.4 with ω = 1/2, 1/8 and 1/32.
In each case, the optimization time was chosen to be significantly larger than the time
scale of the base-flow variations, and was verified to be long enough to rule out eventual
relaminarization. In particular, for Wosc = 0 the optimization time was T = 200, for
ω = 1/2 it was T = 300, for Wosc = 0.2 and ω = 1/8, 1/32 it was T = 600, and for
Wosc = 0.4 and ω = 1/8, 1/32 it was T = 400. Figure 7(a) shows the upper bounds for
Ec found by solving iteratively the minimal seed nonlinear energy optimization problem.
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(For a description of the optimization problem and its solution, see Kerswell 2018.) The
turbulent kinetic energy for Wosc = 0 and the values indicated by filled symbols for
Wosc = 0.2 and 0.4 are all converged results. Two of the results for Wosc = 0.4 did not
converge: with ω = 1/8 after 1538 iterations and with ω = 1/32 after 824 iterations,
each iteration taking between 1 and 2 hours with 16 CPUs. In contrast, the minimal seed
for Wosc = 0 converged after 267 iterations. Nonetheless, the turbulent kinetic energies
reported in figure 7 for the two non-converged cases are the smallest values for which an
initial condition on the turbulent side of the edge manifold has been found; as such, they
are still upper bounds on Ec, though unlike the converged cases, we have no measure of
how close the non-converged values are to Ec. Despite not converging, after 1538 and 824
iterations, respectively, the algorithm has not identified any initial conditions that transition
to turbulence for turbulent kinetic energies 10−10 (or around 10−3 %) smaller than those
reported in figure 7(a).

The values of Ec in figure 7(a) indicate that the oscillation amplitude Wosc has little
effect on the minimal seed energy when ω = 1/2, as is also true for the edge state energies
shown in figure 6(b). For ω = 1/8 and 1/32, a clear difference between Wosc = 0 and
Wosc /= 0 is seen. Unlike the edge state energies, it is evident that as ω decreases, the
minimal seed energy increases, representing a slight stabilization of the laminar flow
(albeit in a local optimal sense). The minimal seed energy also increases as the oscillation
amplitude Wosc increases. This is also different to edge state energy observations, and
indicates that as the flow becomes more nonlinearly stable (i.e. as Ec increases), the energy
gap between the minimal seed and the edge state decreases.

The dynamics of the trajectory that the minimal seeds take towards the turbulent
attractor is indicated in figures 7(b–h), which show the time-evolution of the spanwise
distribution of the xy-averaged turbulent kinetic energy of each minimal seed as it
evolves along the edge manifold. Since the turbulent kinetic energy spans several orders
of magnitude during each of these simulations, the colour scheme is applied in a
logarithmic scale. The dynamics for Wosc = 0 (figure 7b) and forω = 1/2 with Wosc = 0.2
(figure 7c) and Wosc = 0.4 (figure 7d) are similar, consisting of a spanwise-localized
(and streamwise-localized) initial condition that unwraps into a streamwise-aligned,
spanwise-localized streaky vortex structure. The spanwise extent of this structure increases
slowly for around 200 time units (30 � t � 220), as the trajectory follows the edge of
chaos, before breaking down rapidly and spreading in the spanwise direction as the
trajectory moves along an unstable manifold of the edge and towards turbulence (t � 220).
This sequence of events replicates qualitatively those found for Wosc = 0 and Re = 1000
by Eaves & Caulfield (2015) in their ‘wide’ geometry, and the reader is directed to that
work and to Duguet et al. (2013) for a more detailed discussion of these flow structures
and their evolution.

The initial evolution (t � 20) of the two minimal seeds for ω = 1/8 in figures 7(e, f ) is
similar to that for ω = 1/2 and Wosc = 0 in figure 7(b). However, the spanwise-localized
structure that the initial condition unwraps into at t ≈ 30 is not streamwise-aligned, and
the structure slowly drifts in the z-direction. Every 2π/ω ≈ 50 time units, the spanwise
extent of the perturbation increases a little, as can be seen at around t = 80 and 130
in figure 7(e). Eventually, the perturbation encompasses the entire domain and fully
developed turbulence is reached. Finally, the dynamics for ω = 1/32 in figures 7(g,h) are
similar to Wosc = 0 in figure 7(b) in the initial stages, but then undergo a large-amplitude
meander in the spanwise direction with a period of approximately 2π/ω ≈ 200 before
breaking down to fully-developed turbulence.
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Figure 7. (a) Upper bounds for the minimal seed turbulent kinetic energy Ec againstω for Wosc = 0 (horizontal
black line), Wosc = 0.2 (blue) and Wosc = 0.4 (orange). Open orange symbols are parameter values where the
algorithm did not converge (see text). (b–h) Time-evolution of the xy-averaged turbulent kinetic energy of the
minimal seed perturbation and its trajectory. The colour scheme is applied following a logarithmic scale over
five orders of magnitude from 10−6 (dark blue) to 0.1 (dark red). The parameter values are: (b) Wosc = 0;
(c,e,g) Wosc = 0.2 and ω = 1/2, 1/8 and 1/32, respectively; and (d, f,h) Wosc = 0.4 and ω = 1/2, 1/8 and
1/32, respectively.

4. Computing the laminarization probability

Both the edge state and the minimal seed are important to understand the dynamical
mechanisms at play during transition to turbulence. However, they are local characteristics
and do not allow us to appreciate the global structure of the edge. To obtain a global
characterization of the edge, we introduce the laminarization probability, which is the
probability Plam(E) that a random perturbation (hereafter RP) from the laminar flow
decays as a function of its initial energy E. It is important to emphasize that we use random
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Optimizing the control of transition to turbulence

perturbations as opposed to perturbations sampled from turbulence or related to physically
meaningful coherent structure because these RPs are meant to model external disturbances
either set by the experimental protocol or caused by the environment surrounding the
place where a flow device is mounted. The laminarization probability was first used in
the uncontrolled plane Couette flow case as well as in the presence of spanwise wall
oscillation for a very limited set of control parameter values (Pershin et al. 2020). However,
the algorithm for the approximation of Plam(E), described in that work and involving the
time-integration of 200 RPs per energy level E, is insufficiently fast to enable efficient
optimization of the control parameters. A simple way to accelerate the algorithm is to
reduce the number of RPs. However, in this case, we must be sure that the uncertainty
induced by small-size sampling is acceptable, which requires an estimation of confidence
intervals in addition to the point estimates used by Pershin et al. (2020). We propose here
a solution based on the Bayesian estimation of the laminarization probability that accounts
for uncertainty quantification, thereby allowing for the computation of a significantly
reduced number of simulations, and hence efficient optimization. The key idea of this
approach is to consider the laminarization probability as a random variable and then
compute its conditional distribution given that particular RPs laminarize or transition to
turbulence. From this conditional distribution, known as the posterior distribution, both
point and interval estimates containing all the necessary information about uncertainty
can be computed.

4.1. Computing the laminarization probability using Bayesian inference
First, we derive the distribution of the laminarization probability from observations carried
out during the numerical simulation of a finite number of RPs. This distribution allows for
the estimation of the laminarization probability as a function of the number of laminarizing
RPs and the size of the observation sample. Let us consider the laminarization probability
Plam = Plam(E), a function of the energy level E, as a random variable. We also introduce
R = (R1,R2, . . . ,RN), a sample consisting of N elements, with each Ri associated with
an RP of the same energy level and taking Boolean values: Ri = 1 if laminarization is
observed, or Ri = 0 if transition is observed. Since turbulence is always transient for the
given flow configuration, we assume that the flow transitions to turbulence if it does not
laminarize for at least 400 time units (see Pershin et al. (2020) for further details). The
probability mass function associated with event Ri = r, knowing that Plam = p, is

P(Ri = r | Plam = p) =
{

p, r = 1,
1 − p, r = 0. (4.1)

Suppose that the sample R takes particular values r = (r1, r2, . . . , rN) and presents l =∑N
i=1 ri laminarization events. Since all the simulations are independent, the probability

of observing such sample values, given the laminarization probability Plam = p, is

P(R = r | Plam = p) = pl(1 − p)N−l. (4.2)

We can now obtain the probability density function fPlam for Plam for a given sample R = r
by applying Bayes’ theorem:

fPlam( p | R = r) = P(R = r | Plam = p)× fPlam( p)
P(R = r)

, p ∈ (0; 1), (4.3)

where fPlam( p|R = r) is referred to as the posterior distribution for p, fPlam( p) is its prior
distribution, P(R = r|Plam = p) is called the likelihood, and P(R = r) is the marginal
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likelihood, which can be expressed in terms of the likelihood function and the prior
distribution:

P(R = r) =
∫ 1

0
P(R = r | Plam = p) fPlam( p) dp. (4.4)

Choosing the prior distribution is a crucial step in Bayesian inference and must
encompass all our knowledge about Plam. When no such knowledge is available, the
prior distribution is usually taken to be the least informative among the whole space
of admissible distributions of Plam (Box & Tiao 2011). Here, more than one choice is
available. Two of the most widely used options are the Jeffreys prior distribution,

fPlam( p) = 1
π

√
p(1 − p)

, p ∈ (0; 1), (4.5)

and the uniform prior distribution, fPlam( p) = 1, for p ∈ (0; 1) (see Appendix B for details
and justifications of such choices). Whilst choosing either of two prior distributions does
not significantly affect the posterior distribution for large N, it does have significant
influence for N � O(10) (Gelman et al. 1995). Preliminary analysis of the effect of the
choice of a prior distribution for Wosc = 0 and (Wosc, ω) = (0.3, 1/16) shows that the
use of the uniform prior distribution makes the probabilistic model conservative around
extreme values of Plam so that it tends to predict values for Plam closer to 0.5 than they
actually are.

The Jeffreys prior distribution, in contrast, does not seem to introduce any such
significant bias; this is confirmed during the validation of the described approach by
generating a large number of random samples of RPs from an available dataset and then
predicting the laminarization probability (see Appendix D for details). As a result, we
opted for the Jeffreys prior distribution. Substituting (4.5) into (4.3) yields the posterior
distribution in the form of a beta distribution:

fPlam( p | R = r) = pl−1/2(1 − p)N−l−1/2

B(l + 1/2,N − l + 1/2)
, p ∈ (0; 1), (4.6)

where B(·, ·) is the beta function and l is the number of laminarization events out of N
simulations. Now we can readily get a point estimate of the laminarization probability
P̄lam as the expectation of Plam calculated with respect to the posterior distribution (4.6):

P̄lam =
∫ 1

0
p fPlam( p | R = r) dp = l + 1/2

N + 1
. (4.7)

As a convenient consequence of the use of Bayesian inference, the interval estimates
(e.g. interquartile and interdecile ranges) assessing a range of values within which Plam
is likely to be located can also be found directly from the posterior distribution. We show
examples of posterior distributions with their point and interval characteristics in figure 8
for different combinations of the number of laminarizing events l and the sample size N.
Posterior distributions become more peaked as the number of RPs per energy level N is
increased, thereby reflecting the fact that the probability of mispredicting Plam approaches
zero as N → ∞.

4.2. Numerical methodology
Our methodology is summarized in figure 9. Since the laminarization probability depends
on the RP kinetic energy, we first discretize the relevant energy range by considering
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Figure 8. Examples of posterior distributions of the form of (4.6) plotted for N = 10 (blue) and N = 30
(orange), and three values of the fraction of laminarizing RPs: l/N = 0 (a), l/N = 3/10 (b), and l/N = 9/10
(c). Red dots and shaded regions denote the means and interdecile ranges of the corresponding distributions,
respectively.

40 energy levels E(j), j = 1, . . . , 40, equispaced between 0 and Emax = 0.04 (see Pershin
et al. 2020). For each energy level E(j), we then perform N numerical simulations using
N generated RPs as initial conditions (see Appendix C and Pershin et al. (2020) for the
details of the generation procedure) and count the number of laminarization events l (step
1 in figure 9). Next, we compute the posterior distribution (4.6) based on the values of l
and N (step 2 in figure 9). Once posterior distributions are built for all energy levels, the
point estimate of the laminarization probability are calculated using (4.7) at each energy
level (step 3 in figure 9). Finally, an approximation of the dependence of the laminarization
probability on the RP kinetic energy is obtained by least squares fitting of the function

p(E) = 1 − (1 − a) γ (α, βE) (4.8)

to the point estimates of P̄lam(E(j)), where γ (α, βE) is the lower incomplete gamma
function, and a is the asymptotic value of the laminarization probability. This function
possesses characteristics that make it a good fitting choice (Pershin et al. 2020). By using
this fitting function, we embed additional knowledge into our estimation algorithm that
helps us to smooth out the errors that occur inevitably while estimating P̄lam(E(j)) with a
small-size sample.

We find it convenient to characterize the fitting curve of the laminarization probability
by four scalar quantities: the value E99 % of the RP energy at which the laminarization
probability reaches 99 %; the value Eflex of the RP energy at which the fitting function
undergoes its inflection point; the asymptotic value a of the laminarization probability;
and the value Ea of the RP energy at which the laminarization probability is 1 % away
from a. These definitions are illustrated in figure 10. The quantity E99 % can be thought of
as the perturbation energy beyond which there is a non-negligible probability of observing
transition to turbulence. From the perspective of the assessment of control strategies,
this value might be considered as a practical substitute for the minimal seed energy
as it is less dependent on perturbing the flow with the minimal seed’s specific spatial
structure, or of a random perturbation lying within the likely negligible state space volume
occupied by transitional initial conditions nearby to the minimal seed. As the perturbation
kinetic energy is increased, the fitting function decreases monotonically and undergoes
an inflection point at Eflex to approach its asymptotic value a. We can consider that
the laminarization probability plateaus when the RP energy reaches Ea. Even though
this choice for the fitting function proves satisfactory for the flow configurations and
perturbation energy ranges under consideration, it might not be appropriate elsewhere.
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P̄lam (E
(1))

P̄lam (E
( j))

P̄lam (E
(2))

Step 1: sampling R for each
energy level

Step 2: computing posterior
distributions f�lam ( p|R = r)

Step 3: computing point
estimates of Plam with
respect to the posteriors

Figure 9. Schematic procedure used to approximate the laminarization probability. In step 1, we build a sample
R for each RP energy level and determine the number of laminarizing events. Blue (resp. red) blocks correspond
to laminarizing (resp. transitioning) RPs. Next, in step 2, we use the count obtained in each of these samples
to compute the associated posterior distribution fPlam ( p | R = r) based on expression (4.6) for each energy
level. We then compute the point estimates of the laminarization probability based on expression (4.7) for each
energy level. These points are shown using red dots on the step 2 curves and are shown on the bottom graph as
pink bars. The approximate dependence of the laminarization probability on the RP energy is then obtained in
step 3 via least squares fitting based on the fitting function p(E) (blue curve in the bottom plot) introduced in
(4.8). More details on the final fitting are shown in figure 10.

For example, the laminarization probability may return to 1 as E → ∞ owing to the upper
edge of chaos (Budanur et al. 2020) so that modelling the laminarization probability over
the entire energy range would require a different fitting function.

To be able to compare the efficiency of different control strategies, it is important to
remember that the kinetic energy of the initial condition depends on the origin and type
of the disturbance to which the flow is subjected. We therefore introduce the probability
density function fE(E) associated with the probability that a disturbance to the flow is
created with energy E. This allows the definition of the laminarization score:

S =
∫ Emax

0
p(E) fE(E) dE, (4.9)

which represents the expected value of the laminarization probability p(E) assuming
that the perturbation energy is distributed according to fE(E). In other words, the
laminarization score is the probability of observing laminarization in a configuration
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Definition

E99 % p(E99 %) = 0.99

Eflex Eflex =
α – 1

β

Ea |p(Ea) – a| = 0.01

a a = limE→∞ p(E)

E(1) E(2) E(3) ... E( j)
0

0.2

0.4

0.6

0.8

1.0

P̄lam(E( j))

p(E)

a

0.99

E99% Eflex Ea

Figure 10. Examples of estimated laminarization probabilities Plam (pink bars) plotted together with the
associated fitting function p(E) = 1 − (1 − a) γ (α, βE), where γ (α, βE) is the lower incomplete gamma
function (blue curve), together with its characterizing quantities (indicated with black dots on the plot) defined
in the table.

where the laminarization probability is p(E) and where the probability that a perturbation
is generated at energy E is fE(E). We may infer this distribution from experimental
observations or by using a priori knowledge of the perturbation generation mechanisms.
In this work, we assume no prior knowledge of this kind and consider two potentially
useful distributions up to a maximum value Emax: the uniform distribution f (uni)

E (E), to
model cases where no prior knowledge is available about a source of disturbances, and
the exponential distribution f (exp)

E (E), adjusted to finite support, to model cases where
small-energy disturbances are generated more commonly than large-energy ones:

f (uni)
E (E) = 1

Emax
, (4.10)

f (exp)
E (E) = λ

1 − e−λEmax
e−λE, (4.11)

where λ ≈ E−1
avg approximates the inverse of the average energy for sufficiently large

Emax/Eavg.

4.3. Uncertainty quantification
A crucial feature of Bayesian estimation is that it yields not only the estimated point
values of the laminarization probability P̄lam, but also the whole distributions of the
laminarization probability (posterior distributions in the Bayesian terminology), given
only a single sample. This paves the way for uncertainty quantification by assessing the
spread of each of these distributions, for example, through the interquartile and interdecile
ranges, which we treat as confidence intervals. The provision of the resulting uncertainty
estimates makes the Bayesian approach significantly more powerful than simply using the
‘naive’ approximation P̄lam = l/N.

Uncertainty quantification becomes especially important when small-size samples are
used. In particular, in this study, we consider N = 10 RPs per energy level, which,
as we show in Appendix D, is a sufficient number for a good approximation of the
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laminarization score. The use of such a small-size sample reduces significantly the
computational cost of the estimation, which enables a much broader exploration of the
control parameter space.

Below, we describe how one can obtain an approximation of the confidence band for
the fitting function (4.8) based on one sample. We first draw a random sample of N = 10
RPs for each of the 40 energy levels, then compute the 40 resulting posterior distributions
using (4.6). We then use this single sample to build a distribution of 1000 fitting functions
as follows. From each of the posterior distributions, we draw a random laminarization
probability. The resulting values are fitted using the usual fitting function in (4.8). This
procedure is the same as that described in figure 9 with only one exception: instead
of computing point estimates at step 3, we draw random values of the laminarization
probabilities from the posterior distributions obtained at step 2. While steps 1 and 2
are performed only once, this last drawing step is repeated 1000 times, where each time
40 new laminarization probabilities are drawn from the same 40 posterior distributions
as merely random numbers, and then a fitting function is built based on them. In this
way, we end up with 1000 fitting functions well approximating the distribution of fitting
functions. Having calculated this distribution, we can readily compute its interquartile and
interdecile ranges, of which examples are shown in figures 11(a,c) for the uncontrolled
and controlled (Wosc = 0.3, ω = 1/16) cases. The interdecile range will hereafter be
treated as the confidence range or, equivalently, confidence band for the fitting function.
Although they are constructed using a single sample, they can be compared with the
results obtained by subsampling of a large database of RPs (figures 11(b,d), which we
treat as an accurate estimation (see Appendix D for the details of subsampling). Indeed, the
width of the confidence bands obtained through Bayesian estimation (figures 11a,c) is both
qualitatively and quantitatively similar to that inferred from subsampling (figures 11b,d).
The most significant difference can be found for intermediate values of the energy in
the controlled case (figures 11c,d) where the confidence band resulting from Bayesian
estimation is wider than the accurate counterpart. In the same plots, we display the
estimations of uncertainty levels of Plam(Ej) via the interquartile ranges; these are smaller
for extreme values of the laminarization probability and larger for intermediate ones. One
can notice that the uncertainty of point estimates of Plam(Ej) is much larger than that
of the fitting function, and a particular point estimate may deviate significantly from
its accurate counterpart at the same energy levels plotted on the right. However, the
use of the fitting function as an additional source of knowledge allows us to eliminate
much of this uncertainty, which will then lead to a much more certain estimation of the
laminarization score. Despite the fact that these results depend highly on a particular
choice of the initial sample, they show that Bayesian estimation is capable of giving a
reasonable approximation of the confidence bands.

In addition to interdecile and interquartile ranges of the distribution of fitting functions,
we can readily compute the confidence intervals for all the scalar metrics S, Eflex and Ea
following exactly the same strategy.

5. Control assessment via the laminarization probability

Using the method described above, we can now characterize the robustness of the laminar
flow and find the optimal control parameter values (amplitude Wosc and frequency ω)
by seeking to optimize the laminarization score S. We estimate the dependence of S and
the associated confidence intervals on the control parameters by using N = 10 RPs per
energy level and then performing Bayesian estimation for Wosc ∈ {0.1, 0.2, . . . , 0.5} and

941 A25-18

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
59

.1
38

.2
16

.2
1,

 o
n 

27
 A

pr
 2

02
2 

at
 1

5:
03

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

2.
29

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.298


Optimizing the control of transition to turbulence

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
0

0.2

0.4

0.6

0.8

1.0

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
0

0.2

0.4

0.6

0.8

1.0

P la
m

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
0

0.2

0.4

0.6

0.8

1.0

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
0

0.2

0.4

0.6

0.8

1.0

P la
m

E E

(a) (b)

(c) (d )

Figure 11. Expectations (solid lines) for the distribution of fitting functions and their interquartile (dark bands)
and interdecile (light bands) ranges for the uncontrolled (a,b) and controlled (c,d) test cases. Panels (a,c) were
computed using a single sample of N = 10 RPs per energy level, Bayesian estimation of the laminarization
probability (pink bars), and drawing a large number of samples from the posterior distributions to build the
associated interquartile and interdecile ranges (see the text for details). Panels (b,d) were computed by drawing
1000 samples, where each sample corresponds to 10 RPs per energy level, from a large database of RPs with
replacement, and then building a distribution of fitting functions each of which was obtained following the
procedure illustrated in figure 9. Pink bars in (b,d) correspond to the laminarization probability Plam estimated
for all available RPs. Grey error bars correspond to the interdecile range of the laminarization probability
estimated using Bayesian inference (a,c) or subsampling (b,d).

ω ∈ {2−1, 2−2, . . . , 2−5}. To characterize the dependence of the fitting function on the
amplitude and frequency of the wall oscillations, we track the values of Ea and Eflex. The
results are shown in figure 12, where the uniform perturbation energy distribution f (uni)

E (E)
is used to calculate S in figure 12(a), and the exponential distribution f (exp)

E (E) is used in
figure 12(b). The most important observation is that in both plots, most of the confidence
intervals obtained for S do not overlap, so that we can clearly establish a hierarchy between
the various control parameter values tested.

Independently of the type of distribution chosen for the RP energy, S displays two trends
as a function of Wosc and ω. First, we note that S grows with respect to Wosc except for a
single case. This is not the only flow for which increasing the amplitude has a favourable
effect on the control performance; for example, studies of turbulent channel and pipe
flows reported an increase in drag reduction when the oscillation amplitude was increased
(Quadrio & Sibilla 2000; Quadrio & Ricco 2004). Secondly, S reaches a maximum at
ω = 1/8 for all sufficiently large values of Wosc, and decays monotonically away from
it. These trends imply that wall oscillations make the laminar flow the most robust for
Wosc = 0.5 and ω = 1/8 for the range of control parameter values considered. At these
values of the control parameters, laminarization is nearly inevitable (only 3 out of 400
RPs were observed to transition to turbulence, yielding S ≈ 0.95). In fact, the control
strategy is so efficient for Wosc = 0.5 that the concept of the laminarization probability
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Figure 12. Performance of the wall oscillation control strategy as a function of the oscillation frequency ω
shown via the laminarization score S for the uniform (a) and exponential (b) distributions of the RP energy,
fE(E), and via energies Ea (c) and Eflex (d). The results are shown in each panel for different forcing amplitudes
as indicated by the legend. Error bars show the confidence intervals (interdecile ranges) resulting from Bayesian
estimation. The case Wosc = 0.5 and ω = 1/8 leads to almost complete laminarization of all RPs (p(E) ≈ 1),
so that p(E) only weakly depends on E, thereby explaining the abnormal variation of Eflex.

becomes ill-posed since turbulence can rarely be sustained and so the separation between
laminarizing and turbulent RPs becomes ambiguous. All these observations regarding S
are valid for both the uniform and exponential distributions of RP energy.

Whilst the energy associated with the inflection point in the laminarization probability,
Eflex, fluctuates without any clear dependence on Wosc or ω, the expected values of Ea
indicate that the beginning of the asymptotic regime of the laminarization probability
seems to be negatively correlated with S and reaches its minimum value at Wosc = 0.4 and
ω = 1/8. These observations suggest that efficient control tends to increase the asymptotic
value of the laminarization probability a. However, as noted earlier, estimates for Ea and
Eflex cannot be considered as reliable owing to the large confidence intervals associated
with them.

Since the laminarization score determines how likely it is to observe laminar flow given
a random initial condition drawn from a specified distribution, it is useful to consider the
expected consumed energy assessed via the expected dissipation rate:

ε̄ = Sεlam(Wosc, ω)+ (1 − S)εturb(Wosc, ω), (5.1)

where we recall that εlam and εturb are the dissipation rates of the laminar and turbulent
flows given in (2.5) and (2.4), respectively. The expected dissipation rate can be thought
of as a cost function that a flow control designer may seek to minimize with respect to the
control parameters Wosc and ω.

The dependence of the expected dissipation rate on the control parameter values is
shown in figure 13 for the laminarization score calculated with respect to the uniform
(figure 13a) and exponential (figure 13b) distributions of the kinetic energy of RPs. Since
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Figure 13. Expected dissipation rates for the uniform (a) and exponential (b) distributions of the RP energy
plotted as functions of Wosc and ω.

there are no data for the turbulent dissipation rate at Wosc = 0.5 (see the caption of
figure 4 for the explanation), we assume that εturb ≈ 2.7, which is equal to the smallest
value among all the values of the turbulent dissipation rate shown in figure 4. For a
uniform distribution of RP energies, the wall oscillation at Wosc = 0.3 and ω = 1/8
is found to minimize the expected dissipation rate, reducing it by approximately 20 %
compared to the uncontrolled flow. Increasing the control amplitude to Wosc = 0.4 and
keeping the same control frequency performs nearly as well. These results point towards an
optimal control parameter value similar to that found by Rabin et al. (2014), who obtained
Wosc = 0.35 as the amplitude that maximizes the minimal seed energy at a different
Reynolds number (Re = 1000). The picture is different for an exponential distribution
of RP energies: figure 13(b) shows that there are five combinations of the amplitude
and frequency yielding an almost equally small value of the expected dissipation rate,
among which Wosc = 0.1 and ω = 1/16, or Wosc = 0.2 and ω = 1/16, are the two best
options and decrease the energetic cost of the flow by 5 % compared to the uncontrolled
case. In comparison to the case of the uniform distribution, the reduction in the expected
dissipation rate is not so pronounced for the exponential distribution. Moreover, the vast
majority of control configurations for this case actually increase the expected dissipation
rate (the corresponding control parameter values lie above the black line in figure 13b).
The lack of performance of the wall-oscillation strategy is not surprising in the case of
exponentially distributed perturbations; this type of control was shown to mostly increase
the laminarization probability for large perturbation energies (Pershin et al. 2020), and
these are less likely to be generated in the exponential case than for the uniform case.
The appropriate choice of the amplitude and frequency consequently depends on the
distribution of the perturbation energy prescribed by the problem at hand. Moreover, it
is also possible that in certain cases, the expected dissipation rate is not the appropriate
choice for the cost function. For example, a flow control designer may conclude that
transition to turbulence is so harmful (e.g. due to extreme events occurring in turbulent
flows) that it is better to pick Wosc = 0.5 and ω = 1/8 to suppress transition entirely
despite the additional cost that this choice incurs.

6. Discussion

In this work, we have studied the nonlinear stability of plane Couette flow under the action
of a well-known control strategy: in-phase wall oscillations in the spanwise direction. We
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first characterized briefly the typical turbulence observed in this flow under the action
of the control strategy, and observed that it becomes less energetic as the oscillation
amplitude is increased. We also found that the turbulent kinetic energy is at its lowest
for oscillation frequencies around ω = 1/16. We then turned to the two most studied
scalar indicators of the robustness of the laminar flow: the turbulent kinetic energy of
the edge state and that of the minimal seed. The edge state results proved misleading; their
energy typically decreases under the effect of the control strategy, which could lead to the
erroneous conclusion that the laminar flow has become more sensitive to perturbations.
The reason for this tempting misinterpretation is topological: edge states are attractors
on the edge of chaos but they do not have to be representative of all of its properties.
The minimal seed, by definition, is the minimal energy perturbation of the laminar flow
that transitions to turbulence. Under the effect of our control, its turbulent kinetic energy
increases, indicating that triggering turbulence requires larger-amplitude perturbations, as
was observed by Rabin et al. (2014) at a different value of the Reynolds number. In spite
of this, our calculations showed that the minimal seed turbulent kinetic energy is much
smaller than the values that the turbulent kinetic energy typically takes along the edge
of chaos and, as a result, it is of limited use for practical control design. Transitional
trajectories starting from the neighbourhood of the minimal seed, however, provide a great
deal of information regarding the processes at play during transition, which, in turn, can be
controlled (Pringle et al. 2012; Cherubini & De Palma 2013; Duguet et al. 2013; Kerswell
2018). This is, however, out of the scope of our investigation.

To appreciate the structure of the edge of chaos in more detail, we turned to the
laminarization probability, a concept developed recently (Pershin et al. 2020), which
represents the probability that a perturbation of the laminar flow decays as a function of its
turbulent kinetic energy. The laminarization probability can be understood as a measure of
the relative volume in state space of the basin of attraction of the laminar flow. Obtaining
converged laminarization probability results can be computationally prohibitive: Pershin
et al. (2020) required 31 200 core-hours on state-of-the-art computational facilities (7800
simulations distributed onto 39 energy levels, each simulation lasting approximately
4 core-hours) to determine accurately a single laminarization probability curve. We
developed an efficient Bayesian approach that allows us to reduce the computation
time of laminarization probability curves by 95 %. We used this approach to compute
the laminarization probability for a number of control amplitudes and frequencies, and
determined that the laminar flow becomes more robust to finite-amplitude perturbations
as the control amplitude is increased and as the control frequency approaches ω = 1/8.
Interestingly, the same value of the frequency, ω = 1/8, was found to minimize the
turbulent kinetic energy (see figure 3) and the wall-normal shear rate variation (see
figure 4a), but held no importance for the edge state or minimal seed energies.

To provide a simple, explicit assessment of the performance of control strategies,
we further introduced two quantities based on the laminarization probability: the
laminarization score and the expected dissipation rate. The former represents the expected
laminarization probability given that random perturbations are drawn with a prescribed
turbulent kinetic energy distribution and is the quantity that needs to be maximized in
applications where turbulence should be suppressed at all costs. The latter computes
the expected energetic cost of the flow taking into account occurrences of laminar and
turbulent regimes with their respective probabilities, and is, as such, to be minimized
in applications looking for energetic efficiency. We tested these two scalar quantities for
different distributions of perturbation energies and obtained a clear hierarchy of control
parameter values, in terms of the control performance. The laminarization score confirmed
the effect of the amplitude and frequency of wall oscillations on the laminar flow stability.
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On the other hand, the expected dissipation rate allowed us to determine the control
parameters for which more energy is spent maintaining the wall oscillations than is saved
by the increased laminarization probability.

We believe that our probabilistic protocol based on the Bayesian estimation of the
laminarization probability provides an efficient approach to assess reliably the robustness
of the laminar flow. In contrast to minimal-seed or edge-state approaches, our approach
provides overall information on the structure of the edge of chaos. It simply relies on
the use of a time-stepper and does not require complex optimization algorithms, which
makes its implementation relatively user-friendly. Finally, the laminarization probability
can be utilized to construct a control assessment framework and determine optimal control
conditions, as demonstrated in this paper. As formulated, the only prerequisite is the
knowledge of the form of perturbations to which the flow is subject, and their probabilities
as functions of their amplitudes. In the case of experimental studies, the corresponding
probability distribution, denoted fE(E) in our work, may be determined by an experimental
disturbance protocol, whereas in the case of engineering applications, it may be known
from the modelled environment surrounding a flow under control. Moreover, the flexibility
of our approach allows one to give up on using the dependence of the laminarization
probability on the kinetic energy of perturbations and choose a different metric should
it be more suitable for the means of generating perturbations. This may be particularly
important for experimental studies that often rely on perturbating the flow with streamwise
vortices and thereby imply the use of the energy or enstrophy computed with respect to
the spanwise and wall-normal components of the velocity field.

Our method is by no means limited to plane Couette flow and the particular control
strategy that we considered. We expect it to be applicable to the study and control of any
nonlinear system exhibiting finite-amplitude instability, including hydrodynamical (Xi &
Graham 2012; Zammert & Eckhardt 2015; Watanabe, Iima & Nishiura 2016; Chantry,
Tuckerman & Barkley 2017; Khan et al. 2021), thermoacoustic (Subramanian et al. 2010),
plasma (McMillan, Pringle & Teaca 2018), engineering (Virot et al. 2017), ecological
(Menck et al. 2013) and biophysical (Wells, Kath & Motter 2015) models.
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Appendix A. Laminar solution for plane Couette flow with in-phase spanwise wall
oscillations

Consider the Navier–Stokes equation for an incompressible flow:

∂tU + (U · ∇)U = −∇P + 1
Re

∇2U, (A1)
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∇ · U = 0, (A2)

where U = (U,V,W) is the velocity field of components U, V and W in the streamwise
(x), wall-normal (y) and spanwise (z) directions, respectively, and where P is the pressure
and Re is the Reynolds number. This system is accompanied with boundary conditions
associated with in-phase spanwise wall oscillation:

U(x,±1, z, t) = [±1, 0,Wosc sin(ωt + φ)] , (A3)

where Wosc, ω and φ are the amplitude, frequency and phase of the wall oscillations.
The problem is closed by the imposition of periodic boundary conditions in the x- and
z-directions.

Consider a solution of the form

U(x, y, z, t) = [U( y), 0,W( y, t)]. (A4)

After substituting into system (A1), (A2) and assuming constant pressure, we get

∂yyU = 0, (A5)

∂tW = 1
Re
∂yyW. (A6)

The equation for U yields the laminar solution for plane Couette flow, U( y) = y, whilst the
equation for W corresponds to a diffusion equation with boundary condition W(±1, t) =
Wosc sin(ωt + φ). To find the solution for W, we proceed to the change of variable

g( y, t) = W( y, t)− Wosc sin(ωt + φ), (A7)

satisfying homogeneous Dirichlet boundary conditions, which, after substitution into (A6),
yields the inhomogeneous diffusion equation

∂tg = 1
Re
∂yyg − Woscω cos(ωt + φ). (A8)

We first consider the homogeneous version of this equation. Separating the variables into
g( y, t) = θk(t) ψk( y) leads to two eigenvalue problems involving a constant λ:

dθk

dt
= λθk, (A9)

d2ψk

dy2 = Re λψk. (A10)

Given homogeneous boundary conditions, we get

ψk( y) = sin
[1

2 kπ( y + 1)
]
, (A11)

where kπ = √−Re λ, k ∈ N.
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Instead of solving (A9) directly, we can project (A8) onto the eigenmodes

g( y, t) =
∞∑

k=1,
k∈N

Ak(t) sin
[1

2 kπ( y + 1)
]

(A12)

and write its rightmost term as

− Woscω cos(ωt + φ)

∞∑
k=1,
k∈N

2
[
1 + (−1)k+1]

kπ
sin
[

1
2 kπ( y + 1)

]
. (A13)

Substituting (A12) and (A13) into (A8), and collecting the terms proportional to
sin[kπ( y + 1)/2], yields a first-order ordinary differential equation for Ak(t):

dAk

dt
+ k2π2

Re
Ak = −2

[
1 + (−1)k+1]

kπ
Woscω cos(ωt + φ). (A14)

This has general solution

Ak = αk exp
[
−k2π2

Re
t
]

+ ak sin(ωt + φ)+ bk cos(ωt + φ), (A15)

where αk, ak and bk are constants to be determined. Since we are looking for a laminar flow
solution, the transient term can be dropped by letting t → ∞, which yields a time-periodic
solution for Ak.

Thus, in a general form, the solution for g( y, t) can be written as

g( y, t) = a( y) sin(ωt + φ)+ b( y) cos(ωt + φ), (A16)

where the functions a( y) and b( y) are infinite sine series and must both satisfy
homogeneous Dirichlet boundary conditions. Substitution into (A8) yields

ωa cos(ωt + φ)− ωb sin(ωt + φ)

= a′′

Re
sin(ωt + φ)+ b′′

Re
cos(ωt + φ)− Woscω cos(ωt + φ), (A17)

where primes denote derivatives with respect to y. Collecting terms proportional to the sin
and cos bases gives the system

b = − a′′

ω Re
, (A18)

a′′′′ + ω2Re2a = −Wosc ω
2Re2, (A19)

where the fourth-order equation for a( y) is accompanied by the following conditions

a(−1) = a(1) = 0, (A20)

a′′(−1) = a′′(1) = 0. (A21)

The general solution for real-valued a( y) has the form

a( y) = a1 eΩ( y−1) cosΩ( y − 1)+ a2 eΩ( y−1) sinΩ( y − 1)

+ a3 e−Ω( y−1) cosΩ( y − 1)+ a4 e−Ω( y−1) sinΩ( y − 1)− Wosc, (A22)

where (a1, a2, a3, a4) ∈ R
4 and Ω = √

ω Re/2.
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Equation (A18) then gives the general solution for b( y):

b( y) = a1 eΩ( y−1) sinΩ( y − 1)− a2 eΩ( y−1) cosΩ( y − 1)

− a3 e−Ω( y−1) sinΩ( y − 1)+ a4 e−Ω( y−1) cosΩ( y − 1). (A23)

Boundary conditions a(1) = b(1) = 0 immediately give a3 = Wosc − a1 and a4 = a2,
whereas boundary conditions a(−1) = b(−1) = 0 give the following system with respect
to a1 and a2:[

2 sinh 2Ω cos 2Ω 2 cosh 2Ω sin 2Ω
2 cosh 2Ω sin 2Ω −2 sinh 2Ω cos 2Ω

] [
a1
a2

]
=
[

Wosc
(
e2Ω cos 2Ω − 1

)
Wosc e2Ω sin 2Ω

]
, (A24)

whose solution is

a1 = Wosc
(
e2Ω + cos 2Ω

)
2(cosh 2Ω + cos 2Ω)

, (A25)

a2 = − Wosc sin 2Ω
2(cosh 2Ω + cos 2Ω)

. (A26)

Finally, substituting the expressions for a1, a2, a3, a4 into (A22) and (A23), and then a( y)
and b( y) into g( y, t), yields the solution for W( y, t):

W( y, t) = Wosc

cosh 2Ω + cos 2Ω

[[
coshΩy+ cosΩy−+ coshΩy− cosΩy+

]
sin(ωt + φ)

+ [sinhΩy+ sinΩy−+ sinhΩy− sinΩy+
]

cos(ωt + φ)
]
, (A27)

where y± = y ± 1.

Appendix B. Uninformative priors in Bayesian inference

Uninformative priors are supposed to contain as little information about the considered
parameter (Plam in our case) as possible. There exist several ‘principles’ to help determine
which prior distribution should be used. In this work, we consider two of them: the
principle of maximum entropy (Jaynes 1957) and that of reference priors (Bernardo 1979).

The principle of maximum entropy suggests that the prior distribution must maximize
the uncertainty or, equivalently, maximize the surprisal. For continuous distributions, the
uncertainty can be quantified by the differential entropy:

h[ fPlam] = −
∫ 1

0
fPlam( p) log2 fPlam( p) dp, (B1)

which is the analogue of the Shannon information entropy (Shannon 1948). In the absence
of constraints, the distribution with finite support maximizing functional (B1) is the
uniform prior distribution fPlam( p) = 1 (Park & Bera 2009).

The second principle, i.e. the approach based on choosing reference priors, implies
constructing a prior distribution that maximizes the amount of information about Plam
gained after observing data r (Bernardo 1979). The functional to be maximized in this
approach is the expected Kullback–Leibler divergence of the prior distribution fPlam( p)
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from the posterior distribution fPlam( p | R = r):

I[ fPlam] = ED( fPlam( p | R = r)||fPlam( p)), (B2)

where E denotes the expected value and the Kullback–Leibler divergence, D(· || ·), is
defined as

D
(

fPlam( p | R = r) || fPlam( p)
) =

∫ 1

0
fPlam( p | R = r) log2

fPlam( p | R = r)
fPlam( p)

dp. (B3)

This quantity can be understood as a measure of the information about Plam gained by
replacing the prior distribution with the posterior one where the latter was obtained after
observing sample data r. To eliminate its dependence on the sample R whose particular
value r is unknown for us a priori, we take the expectation of the Kullback–Leibler
divergence D

(
fPlam( p | R = r) ||fPlam( p)

)
with respect to R, which gives the expression

(B2). Its maximization with respect to fPlam( p) can then be thought of as looking for a
prior distribution that, on average, maximizes the ‘degree of surprisal’ associated with
Plam after observing sample data r. A class of such uninformative priors is referred to as
reference priors. In the case of our likelihood function (4.2), the resulting prior is

fPlam( p) = 1
π

√
p(1 − p)

, (B4)

which is also known to belong to the class of Jeffreys priors that originates from the use
of the principle of transformation groups (Box & Tiao 2011).

Appendix C. Generation of random perturbations

Random perturbations (RPs) used in this study were introduced by Pershin et al. (2020)
and are defined as

u = Au⊥ + BU lam, (C1)

where u⊥ is a random velocity field, U lam is the laminar solution of plane Couette flow
in the absence of any control, and A and B are random numbers. The random velocity
field u⊥ is incompressible and satisfies no-slip boundary conditions. It is generated
using subroutine randomfield from Channeflow (Gibson 2014) by drawing its spectral
coefficients (û, v̂, ŵ)ijk, where i, j, k correspond to the streamwise, wall-normal and
spanwise wavenumbers, respectively, from the uniform distribution, and then scaling them
so that spectral coefficients decay exponentially with respect to the size of the wavenumber
vector:

(û, v̂, ŵ)ijk = (Zu, Zv, Zw)× (1 − σ)|i|+|j|+|k|, (C2)

where (Zu, Zv, Zw) is a triplet of random numbers drawn from the uniform distribution
with support [−1; 1], and σ = 0.4 is a decay parameter. Once the spectral coefficients
are generated, the random component u⊥ is corrected to ensure incompressibility and
no-slip boundary conditions. Additionally, u⊥ is made orthogonal to the laminar solution,
i.e. 〈u⊥,U lam〉 = 0, and normalized so that ||u⊥||2 = 1. Next, coefficients A and B from
(C1) are generated so that the RP has a prescribed value of the kinetic energy E. It is done
by drawing B from the uniform distribution with support [−2E/||U lam||; 2E/||U lam||],
and then computing A =

√
2E − B2||U lam||. Finally, we time-integrate the resulting field

u for two tiny time steps to ensure no-slip boundary conditions, which introduces only a
negligibly small change in the kinetic energy of the RP and in the values of A and B.
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Figure 14. Relative errors in (a) S, denoted eS, (b) Ea, denoted ea, and (c) Eflex, denoted eflex, as functions
of N. These errors were computed by estimating the fitting function p(E) using N randomly selected RPs per
energy level. Errors associated with the uncontrolled (controlled) system are shown in the top (bottom) row.
The parameter values of the control are Wosc = 0.3, ω = 1/16. The dark (resp. light) blue bands correspond
to the interquartile (resp. interdecile) ranges. Dark blue lines show the expectations of associated errors as
functions of N.

Appendix D. Subsampling-based study of approximation errors

To assess the approximation errors induced by a small-size estimation, we will estimate
Plam(E(j)) for the uncontrolled case (Wosc = 0) and the controlled case (Wosc = 0.3,
ω = 1/16). A large number of RPs (200 per energy level) were used previously in both
cases to approximate accurately the laminarization probability (Pershin et al. 2020).
These results provide a large database of RPs and fitting functions against which our
new Bayesian approach can be tested. We will refer to the (converged) fitting function
obtained in this previous work as pacc(E). To test whether we can obtain acceptable
estimates of the laminarization probability using a small-size sample, we randomly draw,
with replacement, 1000 samples of N RPs per energy level. For each sample, we perform
the procedure summarized in figure 9. From the resulting fitting function, p(E), we extract
parameters a, α and β. This allows us to assess how the errors involved in approximating
the accurate fitting function pacc(E) scale with N. In particular, we track the relative errors
in our estimates for Eflex, Ea and with S subject to the uniform distribution f (uni)

E (E). (Here,
we define the relative error of an approximate value x̃ as ex = |(x̃ − x)/x|, where x is the
accurate value against which the comparison is done.) These errors are denoted eflex, eEa

and eS, respectively.
The dependence of these errors on N for both the uncontrolled and the controlled cases

is displayed in figure 14. The largest relative errors are observed for Ea and Eflex, exceeding
0.7 in certain cases. However, because S is an integral quantity, inaccurate estimates of Ea
and Eflex do not necessarily lead to a large error in S. Indeed, one can observe that for N =
10, the relative error eS is lower than 0.25 for 90 % of the samples in the uncontrolled cases,
and is lower than 0.12 for 90 % of the samples in the controlled case. Such a difference
between the uncontrolled and controlled cases is explained by the fact that with small
sample sizes, relative error degrades compared with absolute error as the accurate value
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of Plam approaches zero, which is indeed the case for the majority of the energy levels for
Wosc = 0.

We also kept track of the expectation and the interquartile and interdecile ranges of the
distribution of fitting function p(E) for N = 10, and report the results in figure 11(b,d)
in the main text. The interdecile range for p(E) has typical amplitude around 0.02, so
the distribution for the fitting function is fairly concentrated around its expectation. Some
exceptions are observed for very small (E � 3 × 10−3) and moderate (5 × 10−3 � E �
9 × 10−3) energy levels where this variation goes beyond 0.1. These are explained by
the large variations in the coefficients α and β obtained from different samples, and
are reflected in the relatively large values of errors ea and eflex in figure 14. Given
these observations, figure 11(b,d) suggests that the laminarization probability can be
approximated reliably using as few as N = 10 RPs per energy level. With such a sample
size, the laminarization score S, a key indicator for the control efficiency, is expected
90 % of the time to take values yielding a relative error lower than 0.25. This allows for
an order-of-magnitude reduction of the number of simulations required to approximate
the laminarization probability, which in turn allows the investigation of wider ranges of
control parameter values without increasing cost.
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