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The vertical heat transfer in Bénard–Marangoni convection of a fluid layer with infinite
Prandtl number is studied by means of upper bounds on the Nusselt number Nu as a
function of the Marangoni number Ma. Using the background method for the temperature
field, it has recently been proven by Hagstrom & Doering that Nu 6 0.838 Ma2/7. In this
work we extend previous background method analysis to include balance parameters
and derive a variational principle for the bound on Nu, expressed in terms of a scaled
background field, that yields a better bound than Hagstrom & Doering’s formulation at
a given Ma. Using a piecewise-linear, monotonically decreasing profile we then show
that Nu 6 0.803 Ma2/7, lowering the previous prefactor by 4.2%. However, we also
demonstrate that optimisation of the balance parameters does not affect the asymptotic
scaling of the optimal bound achievable with Hagstrom & Doering’s original formulation.
We subsequently utilise convex optimisation to optimise the bound on Nu over all
admissible background fields, as well as over two smaller families of profiles constrained
by monotonicity and convexity. The results show that Nu 6 O(Ma2/7(ln Ma)−1/2) when
the background field has a non-monotonic boundary layer near the surface, while a power-
law bound with exponent 2/7 is optimal within the class of monotonic background fields.
Further analysis of our upper-bounding principle reveals the role of non-monotonicity,
and how it may be exploited in a rigorous mathematical argument.
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1. Introduction

When the surface of a layer of fluid experiences sufficiently strong local variations
in temperature, surface-tension-induced shear stresses drive bulk convective motion.
Bénard–Marangoni convection, as it is commonly known, arises in a variety of indus-
trial processes, including drying of thin polymer films (Yiantsios et al. 2015), fusion
welding (DebRoy & David 1995), laser cladding (Kumar & Roy 2009), and the growth
of single-crystal semiconductors (Lappa 2010, Chapter 3 and references therein). Shear-
driven convection is also observed in distillation columns (Zuiderweg & Harmens 1958;
Patberg et al. 1983) and in differentially heated fluids in microgravity environments,
where buoyancy effects are negligible (Lappa 2010, Chapter 2).

Despite its widespread applications, the dynamics and heat transfer properties of
Bénard–Marangoni convection have been studied far less than those of buoyancy-driven
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Rayleigh–Bénard convection. One fundamental question that remains largely unanswered
is how the net vertical heat transfer across the layer, described by the Nusselt number
Nu, depends on the external forcing, measured by the Marangoni number Ma. A phe-
nomenological bounday layer scaling analysis put forward by Pumir & Blumenfeld (1996)

predicts a transition from Nu = O(Ma1/4) to Nu = O(Ma1/3) as laminar convection
rolls are replaced by turbulent convection, with prefactors that depend on the Prandtl
number Pr — the ratio of the fluid’s kinematic viscosity and its thermal diffusivity.
Two-dimensional direct numerical simulations (DNSs) at low Pr and large Ma (Boeck &
Thess 1998; Boeck 2005) confirm the 1/3 scaling exponent for the turbulent regime when

free-slip conditions are imposed on the velocity field, but Nu = O(Ma1/5) is observed in
the no-slip case. Moreover, further DNSs by Boeck & Thess (2001) indicate that Bénard–
Marangoni convection in high-Prandtl-number fluids may not be turbulent even when
Ma is 104 times the value at which convection first appears. Under the assumption that
the observed stationary convection rolls remain stable as Ma is raised when Pr is infinite,
the same authors predict that Nu = O(Ma2/9) in this limit.

Unfortunately, available experimental data (see Schatz & Neitzel 2001; Eckert & Thess
2006, and references therein) do not reach the highly nonlinear regime, where these scaling
laws are thought to apply. An alternative approach to confirm or disprove them is to try
and derive rigorous bounds on Nu as a function of Ma directly from the governing
equations. This can be done without recourse to statistical hypothesis or closure models
using the background method (Doering & Constantin 1992, 1994, 1996; Constantin &
Doering 1995a,b). The essence of the method is to write the temperature field as the sum
of a steady “background” component τ and a time-dependent fluctuation, and show that
if τ satisfies a particular nonlinear stability condition, then Nu is bounded as a function
of τ only. The problem that results is variational in nature: optimise the bound on Nu
over all stable background fields.

The background method has been applied extensively to the Rayleigh–Bénard problem
in a variety of configurations (see e.g. Doering & Constantin 1996; Otero 2002; Doering
et al. 2006; Wittenberg & Gao 2010; Whitehead & Doering 2011, 2012; Goluskin &
Doering 2016). On the other hand, the only result for Bénard–Marangoni convection is
due to Hagstrom & Doering (2010), who used a monotonically decreasing, piecewise-linear

background temperature field to prove Nu 6 0.841 × Ma1/2 for finite-Prandtl-number
fluids, while Nu 6 0.838×Ma2/7 in the infinite-Pr limit.

This work investigates whether Hagstrom & Doering’s bound for Bénard–Marangoni
convection at infinite Prandtl number can be lowered, reducing the gap with the DNS
results and phenomenological predictions of Boeck & Thess (2001). The assumption of
infinite Pr significantly simplifies the mathematical treatment of the problem, making it
amenable to analysis, and still provides an accurate model for large-Pr fluids (Boeck &
Thess 2001), including some silicone oils used in experiments (de Bruyn et al. 1996).

Our primary aim is to determine the best possible upper bound on Nu when the
background method is applied to the temperature field. To this end, we revisit Hag-
strom & Doering’s background method analysis and derive a new upper-bounding vari-
ational principle for the Nusselt number that includes two so-called “balance para-
meters” (Nicodemus et al. 1997). One of these balance parameters can be optimised
analytically, while the remaining one and the background temperature field can be
combined to formulate a bound on Nu in terms of a scaled background profile. We
then employ convex programming to optimize the scaled background field for Marangoni
numbers up to Ma = 109, and observe that the optimal bounds take the form Nu 6
O(Ma2/7(ln Ma)−1/2)—a logarithmic improvement on Hagstrom & Doering’s bound.
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We also seek to identify which features of the optimal scaled background temperature
field are key to lowering the bound on Nu. For instance, non-monotonicity plays an
important role in the background method analysis for infinite-Pr Rayleigh–Bénard
convection (Plasting & Ierley 2005; Doering et al. 2006), and it is natural to ask if the
same is true for the Bénard–Marangoni problem. Another important issue is whether one
can expect to improve Hagstrom & Doering’s bound using a relatively simple background
field, which is amenable to rigorous mathematical analysis. To answer these questions we
utilise convex optimisation once again and minimise the bound on Nu over two families
of scaled background fields: those that decrease monotonically, and those constrained
by convexity. Our results are supported by analysis of the variational principle for the
bound, which also suggests a way to proceed with a rigorous mathematical proof.

Numerical optimisation of the bound on Nu is central to this work, and our com-
putational strategy deserves some remarks. Traditionally, the Euler–Lagrange equations
for the optimal background field and balance parameters are derived, discretised, and
solved (see e.g. Plasting & Kerswell 2003; Wen et al. 2013, 2015). Instead, we discretise
the variational problem for the bound to obtain a convex conic programme, i.e., a convex
optimisation problem in which the variables are constrained to belong to a convex cone.
The procedure is similar to that described in previous works by the authors (Fantuzzi
& Wynn 2015, 2016a), however here we use a different discretisation method. The first
advantage of this approach is that very efficient software packages are available to solve
conic programmes. The second is that additional linear constraints on the background
field, such as monotonicity and convexity, can be included in a straightforward way
and without any changes to the numerical optimisation algorithm. Conic programming,
therefore, enables one to interrogate the bounding principle in a systematic way, in order
to inform rigorous mathematical analysis. This applies not only to infinite-Pr Bénard–
Marangoni convection, but to any convex upper-bounding variational problem obtained
from the application of the background method.

The outline of this work is the following. Section 2 introduces Pearson’s model (Pearson
1958) for Bénard–Marangoni convection at infinite Prandtl number, which is our starting
point. We apply the background method with balance parameters to formulate an uper-
bounding variational principle for the Nusselt number in §3, and compare it to the one
derived by Hagstrom & Doering (2010) in §4. Section 5 is devoted to the numerical
optimisation of the background fields, and describes our computational approach in
detail. We discuss our results in §6 with the help of additional analysis of the variational
problem for the bound. Section 7 concludes the paper.

Our notation will be mostly standard. Upon non-dimensionalising, we consider a two-
dimensional, horizontally-periodic layer with domain [0, 2π]×[0, 1], with x and z denoting
the horizontal and vertical coordinates, respectively. The L2 and L∞ norms in the z
direction will be denoted by ‖·‖2 and ‖·‖∞, respectively, i.e.

‖q‖2 ..=

(∫ 1

0

|q(z, ·)|2 dz

)1/2

, ‖q‖∞ ..= sup
z∈[0,1]

|q(z, ·)|. (1.1)

Overlines denote horizontal and infinite-time averages, while angle brackets indicate
volume and infinite-time averages, i.e.

q(z) ..= lim
T→∞

1

T

∫ T
0

1

2π

∫ 2π

0

q(x, z, t) dxdt, 〈q〉 ..=

∫ 1

0

q(z) dz. (1.2)

Since infinite-time averages need not exist in general, one could be more rigorous and
replace lim with lim sup. Note also that 〈|q(z)|2〉 = ‖q‖22 when q depends only on z.
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2. Pearson’s model

Consider a two-dimensional layer of incompressible fluid of depth h, density ρ, kin-
ematic viscosity ν, thermal diffusivity κ and thermal conductivity λ (the model and the
results may be generalised to the three-dimensional case as described in Hagstrom &
Doering 2010). The fluid is heated from below at constant temperature, and cooled at
the surface with a fixed heat flux q. The problem is made non-dimensional using h as the
length unit, h2/κ as the time unit, and qh/λ as the temperature unit. When the Prandtl
number Pr = ν/κ is infinite, Pearson’s equations for the fluid’s motion (Pearson 1958)
reduce to (Hagstrom & Doering 2010)

∇p =∇2u, (2.1a)

∂tT + u · ∇T =∇2T, (2.1b)

∇ · u = 0, (2.1c)

where u(x, z, t) = u(x, z, t)i+ w(x, z, t)k is the fluid’s velocity, p(x, z, t) is the pressure,
and T (x, z, t) is the temperature. All variables are assumed to be periodic in the horizontal
direction (i.e. along the x axis) with period 2π, and satisfy the vertical boundary
conditions (BCs)

u|z=0 = 0, w|z=1 = 0, T |z=0 = 0, ∂zT |z=1 = −1. (2.2)

The fluid is driven at the top boundary by surface tension forces due to local temperature
gradients, which induce motion in the bulk of the layer through the action of viscosity.
Mathematically, the situation is described by the additional BC

[∂zu+ Ma ∂xT ]z=1 = 0. (2.3)

The Marangoni number Ma = γqh2/(λρνκ), where γ is the negative of the derivative of
the surface tension with respect to the fluid’s temperature, describes the ratio of surface
tension to viscous forces, and is the governing non-dimensional parameter of the flow.

The purely conductive state u(x, z, t) = 0, p = constant, T (x, z, t) = −z is asymp-
totically stable when Ma 6 66.84 (Fantuzzi & Wynn 2017), while for Ma > 79.61 it is
subject to linear instabilities (Pearson 1958) and convection sets in (Boeck & Thess 1998,
2001). Taking the divergence of (2.1a) and using incompressibility shows that ∇2p = 0,
so taking the Laplacian of (2.1a) gives

∇4u = 0. (2.4)

Thus, each component of the ensuing convective velocity is bi-harmonic, and can be
determined as a linear function of the temperature field, which forces (2.4) via the
BC (2.3). In particular the horizontal Fourier coefficients ŵk(z), k ∈ Z, of the vertical
velocity w can be computed as a function of the horizontal Fourier coefficients T̂k(z) of
the temperature. One finds (Hagstrom & Doering 2010)

ŵk(z) = −Ma fk(z) T̂ (1), k ∈ Z, (2.5)

where f0(z) = 0 (so ŵ0 = 0 and w has zero horizontal mean), and

fk(z) =
k sinh k [kz cosh(kz)− sinh(kz) + (1− k coth k) z sinh(kz)]

sinh(2k)− 2k
, k ∈ Z\{0}. (2.6)

Note that the function fk satisfies fk(z) 6 0 for z ∈ [0, 1], fk(0) = 0 = fk(1), and
fk(z)→ 0 pointwise for all z ∈ (0, 1) as k →∞ (see figure 1; note that the corresponding
figure in Hagstrom & Doering’s original paper is incorrect: they plot the negative of fk).

Convection enhances the vertical heat transport, and since the BC ∂zT |z=1 = −1
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Figure 1. The function fk(z) for k = 1 (dotted line), k = 3 (dashed line), k = 10 (dot-dashed
line), and k = 100 (solid line).

prescribes the heat flux through the top surface, the net effect is a reduction in the
temperature drop across the layer. The key non-dimensional parameter to quantify this
process is the Nusselt number

Nu ..= − 1

T (1)
=

1

〈|∇T |2〉
, (2.7)

where |∇T |2 = (∂xT )2 + (∂zT )2. The first equality in (2.7) defines the Nusselt number,
while the second one can be proven by taking the volume and infinite-time average of
T×(2.1b), followed by appropriate integrations by parts using (2.1c) and the BCs (for
more details, see Hagstrom & Doering 2010).

3. An upper-bounding variational principle for the Nusselt number

3.1. The background method with balance parameters

The background method analysis begins by decomposing the temperature variable as

T (x, z, t) = τ(z) + θ(x, z, t), (3.1)

where the steady background field τ(z) satisfies the BCs

τ(0) = 0, τ ′(1) = −1, (3.2)

while the time-dependent perturbation θ(x, z, t) is periodic in the horizontal direction
and satisfies

θ|z=0 = 0, ∂zθ|z=1 = 0. (3.3)

Upon substituting this decomposition into (2.1a) we obtain an evolution equation for
the perturbation θ,

∂tθ + u · ∇θ =∇2θ + τ ′′ − w τ ′. (3.4)

Averaging θ×(3.4) over the volume and infinite time, followed by appropriate integration
by parts using (2.1c) and the BCs for θ in (3.3), shows that〈

|∇θ|2 + τ ′ ∂zθ + τ ′ w θ
〉

+ θ(1) = 0. (3.5)

Moreover, substituting (3.1) into (2.7) gives the two identities

Nu−1 + θ(1) + τ(1) = 0, (3.6a)

Nu−1 −
〈
|∇θ|2 + 2 τ ′ ∂zθ

〉
− ‖τ ′‖22 = 0. (3.6b)

Taking the linear combination α×(3.5)−β×(3.6a)+(3.6b) for scalar balance parameters
α, β 6= 1 to be determined, using the fact that θ(1) = 〈∂zθ〉 by virtue of (3.3), and
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rearranging yields

1

Nu
= −
‖τ ′‖22 + β τ(1)

β − 1
+
α− 1

β − 1
Q{θ, w}, (3.7)

where

Q{θ, w} =

〈
|∇θ|2 +

α

α− 1
τ ′ w θ +

(
α− 2

α− 1
τ ′ +

α− β
α− 1

)
∂zθ

〉
. (3.8)

If the balance parameters are chosen to satisfy

α− 1

β − 1
> 0 (3.9)

we can bound

1

Nu
> −
‖τ ′‖22 + β τ(1)

β − 1
+
α− 1

β − 1
inf
θ, w
Q{θ, w}, (3.10)

where the infimum is taken over all horizontally periodic fields θ that satisfy the BCs
in (3.3) and over all velocity fields w with horizontal Fourier coefficients given by (2.5).
The key simplification is that we do not require θ to satisfy the nonlinear evolution
equation (3.4). As a result, we may without any loss of generality restrict our attention
to time-independent perturbations, and interpret 〈·〉 in (3.8) as a volume average.

To compute the infimum in (3.10) we substitute the Fourier expansions for θ and w

into (3.8). Noticing that θ̂k = T̂k for k 6= 0 by virtue of (3.1), and that f0(·) = 0 in (2.5),

the Fourier coefficients ŵk can be expressed in terms of θ̂k as

ŵk(z) = −Ma fk(z) θk(1), k ∈ Z. (3.11)

Moreover, θ̂−k = θ̂∗k (where ∗ denotes complex conjugation) because the Fourier modes
must combine into the real-valued temperature perturbation θ. Consequently, we may
rewrite

Q{θ, w} = Q0{θ̂0}+ 2
∑
k>1

Qk{θ̂k} (3.12)

where

Q0{θ̂0} ..=

∫ 1

0

[∣∣∣θ̂′0(z)
∣∣∣2 +

(
α− 2

α− 1
τ ′(z) +

α− β
α− 1

)
θ̂′0(z)

]
dz, (3.13)

while for k > 1 the last term in (3.8) vanishes and we have

Qk{θ̂k} ..=

∫ 1

0

{∣∣∣θ̂′k(z)
∣∣∣2 + k2

∣∣∣θ̂k(z)
∣∣∣2 − αMa

α− 1
τ ′(z) fk(z) Re

[
θ̂k(1) θ̂k(z)

∗]}
dz. (3.14)

Now, the infimum of Q{θ, w} must be negative semidefinite since Q{0, 0} = 0. Moreover,
each functional Qk, k > 0 must be individually lower bounded because among all
perturbations θ, w are those with only one horizontal wavenumber. In light of (3.3),

this lower bound must be sought over all complex-valued functions θ̂k(z) that satisfy

θ̂k(0) = 0 = θ̂′k(1). Since Q0{0} = 0, the infimum of Q0 must be negative semidefinite.
When k > 1, instead, Qk is a homogeneous functional and so if it is lower bounded, its
infimum must be exactly zero. Consequently,

inf
θ, w
Q{θ, w} =

inf
θ̂0

Q0{θ̂0} if Qk{θ̂k} > 0, k = 1, 2, . . . ,

−∞ otherwise.
(3.15)
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In appendix A we show that

inf
θ̂0

Q0{θ̂0} = −
‖(α− 2)τ ′ + α− β‖22

4(α− 1)2
. (3.16)

Substituting this into (3.10), and using the fact that

τ(1) =

∫ 1

0

τ ′(z) dz (3.17)

by virtue of (3.2) to simplify the resulting expression, we obtain

1

Nu
> −

4α(β − 1)τ(1) + ‖ατ ′ + α− β‖22
4(α− 1)(β − 1)

. (3.18)

This bound is valid if (3.9) holds, and if the background field τ is chosen to make the

functional Qk{θ̂k} in (3.14) positive semidefinite for all (integer) wavenumbers k > 1.
The latter set of constraints can be combined into the single condition that〈

|∇θ|2 +
α

α− 1
τ ′ w θ

〉
> 0 (3.19)

for all perturbations θ, w with zero horizontal mean that satisfy (3.3) and (3.11). Using
well-established terminology, we refer to such θ and w as admissible perturbations, and
to (3.19) as the spectral constraint.

The best possible bound on Nu is then found upon solving the following optimization
problem:

sup
τ(z), α, β

−
4α(β − 1)τ(1) + ‖ατ ′ + α− β‖22

4(α− 1)(β − 1)

subject to

〈
|∇θ|2 +

α

α− 1
τ ′ w θ

〉
> 0 ∀ admissible θ, w,

α− 1

β − 1
> 0,

τ(0) = 0,

τ ′(1) = −1.

(3.20)

Note that we look for the supremum of the objective function (rather than its maximum)
because the strict inequality (α−1)/(β−1) > 0 may prevent the existence of a maximiser.

3.2. Optimization over β

The lower bound (3.18) can be optimised over β in a relatively straightforward way,
because the spectral constraint is independent of β. Upon setting to zero the first
derivative of the right-hand side of (3.18) with respect to β, and using (3.17) to rearrange,
we find two stationary values,

β+ = 1 + ‖α τ ′ + α− 1‖2 , β− = 1− ‖α τ ′ + α− 1‖2 . (3.21)

Inspection of the second derivative of the right-hand side of (3.18) with respect to β
reveals that when α is constrained by (3.9) both choices β = β+ and β = β− correspond
to a local maximum. Determining the optimal choice of β therefore requires comparing
the values of such local maxima.

After choosing β = β+ and re-parametrising α = λ/(λ − 1)—with λ > 1 to sat-
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isfy (3.9)—we can use (3.17) to rewrite (3.18) as

1

Nu
>

1− ‖λ τ ′ + 1‖2 − λ τ(1)

2
. (3.22)

The spectral constraint (3.19) can also be expressed in terms of λ as

〈|∇θ|2 + λ τ ′ w θ〉 > 0 ∀ admissible θ, w. (3.23)

Upon introducing the scaled background field ρ(z) = λ τ(z) = α/(α− 1) τ(z), subject to
a suitably scaled version of the BCs in (3.2), the optimal bound on Nu corresponding to
the choice β = β+ is found by solving the variational problem

sup
ρ(z), λ

1− ‖ρ′ + 1‖2 − ρ(1)

2

subject to 〈|∇θ|2 + ρ′ w θ〉 > 0 ∀ admissible θ, w,

ρ(0) = 0,

ρ′(1) = −λ,
λ > 1.

(3.24)

Similar steps show that the best possible bound on Nu when setting β = β− in (3.18)
is given by the solution of an optimisation problem that differs from (3.24) only in the
constraint for λ,

sup
ρ(z), λ

1− ‖ρ′ + 1‖2 − ρ(1)

2
,

subject to 〈|∇θ|2 + ρ′ w θ〉 > 0 ∀ admissible θ, w,

ρ(0) = 0,

ρ′(1) = −λ,
λ < 1.

(3.25)

The key observation at this stage is that the suprema in (3.24) and (3.25) coincide
despite the different constraint on λ, and furthermore they are equal to the optimal
value of the variational problem

max
ρ(z)

1− ‖ρ′ + 1‖2 − ρ(1)

2
,

subject to 〈|∇θ|2 + ρ′ w θ〉 > 0 ∀ admissible θ, w,

ρ(0) = 0.

(3.26)

In fact, for any value of λ we can construct a feasible ρ(z) for either (3.24) or (3.25)
that approximates the solution of (3.26) arbitrarily accurately: simply let ρ0(z) be an
ε-suboptimal strictly feasible point for (3.26), and choose ρ′(z) = ρ′0(z) in (3.24) or (3.25)
except for an infinitesimally thin layer near z = 1, where ρ′(z) = −λ. A rigorous argument
follows steps similar to those used in the energy stability analysis of the conductive
state (Fantuzzi & Wynn 2017), and is omitted for brevity. The conclusion is satisfactory:
the bound on Nu is independent of whether one sets β = β+ or β = β− in (3.18).

3.3. An explicit value for the optimal β

The variational principle (3.26) has been obtained by optimising the balance parameter
β as a function of the other balance parameter, α, and the background field τ(z).
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Interestingly, the optimality conditions for the solution ρ?(z) of (3.26) allow deriving
a precise numerical value for the optimal β even though the optimal α and τ(z) are
unknown. To show this, we introduce a variable s such that ‖ρ′ + 1‖2 6 s and note
that (3.26) is equivalent to

max
ρ(z),s

1− s− ρ(1),

subject to 〈|∇θ|2 + ρ′ w θ〉 > 0 ∀ admissible θ, w,

ρ(0) = 0,

‖ρ′ + 1‖2 6 s.

(3.27)

The feasible set of this problem is convex, so the linear objective function is maximised
on the constraint boundary. Since for any given ρ(z) we can always choose s = ‖ρ′ + 1‖2,
the optimal bound is attained when ρ(z) is on the boundary of the feasible set of the
spectral constraint, i.e. when

inf
θ,w 6=0

〈|∇θ|2 + ρ′ w θ〉 = 0. (3.28)

Since the spectral constraint is homogeneous in θ and w, it suffices to restrict our attention
to admissible θ and w satisfying some normalisation condition N{θ, w} = 0 that excludes
the zero fields. The optimal scaled background field ρ?(z) and the optimal value s? are
then those that maximise the Lagrangian functional

L{ρ, s, θ, w, ζ, η, µ} ..= 1− s− ρ(1) + ζ 〈|∇θ|2 + ρ′ w θ〉

+ η
(
s2 − ‖ρ′ + 1‖22

)
+ µN{θ, w}, (3.29)

where ζ, η and µ are scalar Lagrange multipliers.
Setting to zero the first variation of L with respect to ρ(z) shows that the optimal

scaled background field ρ?(z) must satisfy the “natural” boundary condition

1 + 2 η + 2 η ρ′?(1) = 0. (3.30)

(Of course, ρ?(z) must also satisfy an Euler–Lagrange differential equation, but this will
not be important here.) Moreover, setting to zero the derivatives of L with respect to s
and η, and eliminating s yields

2 η ‖ρ′? + 1‖2 − 1 = 0. (3.31)

At this point, note that if ρ′(z) = −1 the spectral constraint (3.27) reduces to the condi-
tion for global “energy” stability of the conduction solution (see e.g. Fantuzzi & Wynn
2017), which cannot be satisfied in the convective regime. Consequently, ‖ρ′? + 1‖2 6= 0
and we may use (3.31) to eliminate η from (3.30). The optimal scaled background field
must therefore satisfy

1 + ‖ρ′? + 1‖2 + ρ′?(1) = 0. (3.32)

In particular, this implies that−ρ′?(1) > 1, so ρ?(z) is also the optimal solution of (3.24)
with λ = −ρ′?(1). Recollecting the re-parametrisation α = λ/(λ − 1) we conclude that
the optimal value of the balance parameter α, denoted α?, is given by

α? =
ρ′?(1)

ρ′?(1) + 1
. (3.33)

Finally, recalling that (3.24) was obtained by setting β = β+ from (3.21) and that
α?τ

′
?(z)/(α? − 1) = ρ′?(z) according to our rescaling, we can apply (3.33) and (3.32) in
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succession to conclude that the optimal value of the balance parameter β is

β? = 1 + (α? − 1) ‖ρ′? + 1‖2 =
ρ′?(1) + 1− ‖ρ′? + 1‖2

ρ′?(1) + 1
= 2. (3.34)

4. Relation to Hagstrom & Doering’s variational problem

The bounding principle formulated by Hagstrom & Doering (2010) can be recovered
upon setting α = 2 and β = 2 in (3.20). These values clearly satisfy (3.9), and we have
seen that the choice β = 2 is optimal. The variational problem for the optimal background
field becomes

max
τ(z)

− ‖τ ′‖22 − 2 τ(1),

subject to 〈|∇θ|2 + 2 τ ′ w θ〉 > 0 ∀ admissible θ, w,

τ(0) = 0.

(4.1)

Strictly speaking we should also enforce the boundary condition τ ′(1) = −1, but this
does not limit the choice of τ for the same reasons discussed at the end of §3.2.

To bring (4.1) in contact with (3.26), we change variables to ϕ = 2τ and use the
boundary condition ϕ(0) = 0 to rewrite (4.1) as

max
ϕ(z)

1− ‖ϕ′ + 1‖22 − 2ϕ(1)

4
,

subject to 〈|∇θ|2 + ϕ′ w θ〉 > 0 ∀ admissible θ, w,

ϕ(0) = 0.

(4.2)

It is clear that (3.26) and (4.2) have the same feasible set. It is also not difficult to
show that the optimal value of (3.26) is no smaller than that of (4.2); in fact, for any
feasible ϕ(z)

1− ‖ϕ′ + 1‖2 − ϕ(1)

2
−

1− ‖ϕ′ + 1‖22 − 2ϕ(1)

4
=

(
1− ‖ϕ′ + 1‖2

2

)2

> 0. (4.3)

In particular, using (3.26) it is almost immediate to obtain a 4.2% improvement for the

prefactor of Hagstrom & Doering’s bound, Nu 6 0.838 Ma2/7, at least in the limit of
infinite Marangoni number: in appendix B we show that

Nu 6 0.803×Ma2/7 as Ma →∞. (4.4)

What is not immediately apparent when comparing (4.2) to (3.26) is that fixing the
balance parameters a priori does not change the asymptotic behaviour of the optimal
bounds as Ma →∞. To show that this is true, recall from §3.3 that the choice β = 2 is
optimal. After fixing β = 2 and re-parametrising α = λ/(λ− 1) as in §3—with λ > 1 to
satisfy (3.9)—the bound in (3.18) becomes

1

Nu
> 1− λ2

4(λ− 1)
‖τ ′ + 1‖22 . (4.5)

From this point onwards, the analysis is analogous to that of the infinite-Pr Rayleigh–
Bénard problem (Plasting 2004, Chapter 6). First, let w = Ma w̃ and define the scaled
Marangoni number M = λMa to rewrite the spectral constraint (3.23) as〈

|∇θ|2 +M τ ′ w̃ θ
〉
> 0 ∀ admissible θ, w̃. (4.6)
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Upon rescaling w = Ma w̃ the Marangoni number drops out of equation (3.11), so w̃ is
a (linear) function of θ only and the admissible test functions in (4.6) are independent
of M . Then, consider the family of background fields τM , parametrized by the scaled
Marangoni number M , that maximises the right-hand side of (4.5) for a fixed value of
λ. In other words, assume that τM solves the variational problem

min
τ(z)

‖τ ′ + 1‖22

subject to
〈
|∇θ|2 +M τ ′ w̃ θ

〉
> 0 ∀ admissible θ, w̃.

(4.7)

Moreover, suppose σ(M) is such that

‖τ ′M + 1‖22 = 1− σ(M). (4.8)

Note that it is reasonable to assume that σ(M)→ 0 as M →∞, because we expect that
τ ′(z) ≈ 0 except for thin boundary layers if the scaled spectral constraint (4.6) is to be
satisfied. The optimal bound for a given value of λ is then given by

1

Nu
>
λ2 σ(M)− (λ− 2)2

4(λ− 1)
. (4.9)

Using the fact that dM/dλ = d(λMa)/dλ = M/λ, it is straightforward to show that the
right-hand side of the last expression is maximised with respect to λ when

λ =
2− 2σ(M)−M σ′(M)

1− σ(M)−M σ′(M)
, (4.10)

and that the corresponding bound on the Nusselt number is

Nu 6
4− 4σ(M)− 4M σ′(M)

4σ(M)− [2σ(M) +M σ′(M)]
2 . (4.11)

Now, recall that Nu > 1 since convection enhances the purely conductive vertical heat
transport. Using the fact that λ > 1 and the assumption that σ(M) → 0 as M → 0 it
is then not difficult to see that since Nu > 1 the quantity M σ′(M) must be uniformly
bounded as the scaled Marangoni number M tends to infinity. Consequently, the solution
λ? = λ?(M) of (4.10) satisfies

lim
M→∞

λ?(M) = O(1). (4.12)

This implies that Ma = O(M) as M → ∞, meaning that the optimization over the
balance parameter does not influence the asymptotic scaling of the bound on Nu with
the Marangoni number.

5. Optimal bounds

We now turn our attention to the numerical solution of the variational problem (3.26).
To implement our computational strategy, described in §5.1 below, it is convenient to
change variables once more and let

ρ(z) ..=

∫ z

0

[φ(ξ)− 1] dξ, (5.1)
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so the boundary condition ρ(0) = 0 is satisfied. Since ρ′(z) = φ(z) − 1, (3.26) can be
rewritten as

max
φ(z)

1− 1

2
‖φ‖2 −

1

2

∫ 1

0

φ(z),

subject to 〈|∇θ|2 + (φ− 1)w θ〉 > 0 ∀ admissible θ, w.

(5.2)

Moreover, we introduce a non-negative variable s such that ‖φ‖2 6 s. After dropping the
constant 1 as well as a factor of 1/2 from the objective function, it is not difficult to see
that the optimal solution of (5.2) is the same as that of the convex problem

max
φ(z), s

− s−
∫ 1

0

φ(z),

subject to 〈|∇θ|2 + (φ− 1)w θ〉 > 0 ∀ admissible θ, w,

‖φ‖2 6 s.

(5.3)

As anticipated in §1, we are also interested in optimising the bound on Nu over the
restricted classes of monotonically decreasing and convex scaled background fields, i.e.
such that ρ′(z) 6 0 and ρ′′(z) > 0. This is achieved by solving the convex problems

max
φ(z), s

− s−
∫ 1

0

φ(z),

subject to 〈|∇θ|2 + (φ− 1)w θ〉 > 0 ∀ admissible θ, w,

‖φ‖2 6 s,

φ(z) 6 1,

(5.4)

and

max
φ(z), s

− s−
∫ 1

0

φ(z),

subject to 〈|∇θ|2 + (φ− 1)w θ〉 > 0 ∀ admissible θ, w,

‖φ‖2 6 s,

φ′(z) > 0.

(5.5)

5.1. Computational methodology

Our computational methodology is based on the observation that the constraints
in (5.3)–(5.5) are the infinite-dimensional equivalent of well-known types of finite-
dimensional convex constraints. As already pointed out in previous work (Fantuzzi &
Wynn 2016a) the spectral constraint is the infinite-dimensional equivalent of a linear
matrix inequality (LMI), the condition that a symmetric matrix S whose entries are affine
with respect to a set of optimisation variables is positive semidefinite (denoted by S � 0).
The norm constraint ‖φ‖2 6 s, instead, is the infinite-dimensional version of a second
order cone constraint (SOCC), i.e. the requirement that a vector y ∈ Rn+1 and a scalar
s satisfy ‖y‖ 6 s, where ‖·‖ denotes the usual Euclidean norm of a vector. Finally, the
pointwise constraints φ(z) 6 1 and φ′(z) > 0 are the infinite-dimensional equivalent of
element-wise inequalities for a vector y ∈ Rn+1 of the form Ay 6 b, with A ∈ Rm×(n+1)

and b ∈ Rm given. For more details on LMIs and SOCCs we refer the reader to the works
by Boyd et al. (1994) and Boyd & Vandenberghe (2004). Optimisation problems with
LMIs, SOCCs, and element-wise vector inequalities are well-known instances of so-called
conic programmes, and can be solved to high accuracy in polynomial time (Vandenberghe
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z

ψi(z)

0 x1 · · · xi−1 xi xi+1 · · · xn−1 1

1

Figure 2. Sketch of the piecewise-linear function ψi(z).

& Boyd 1996; Boyd & Vandenberghe 2004). Consequently, problems (5.3)–(5.5) can be
solved numerically if we discretise them to obtain conic programmes.

In order to reduce the norm constraint ‖φ‖2 6 s to a SOCC, we introduce a piecewise-
linear ansatz for φ. Given a set of n + 1 collocation points 0 = z0 < z1 < . . . < zn−1 <
zn = 1, we denote φi = φ(zi) for all i = 1, . . . , n and consider

φ(z) =

n∑
i=0

φi ψi(z), (5.6)

where ψi(z) is the unique piecewise-linear function satisfying ψi(zi) = 1 and vanishing
at all other nodes (cf. figure 2). After defining the column vector of nodal values

Φ ..= [φ0, . . . , φn]
T ∈ Rn+1, (5.7)

it is clear that there exists a positive definite matrix P = RTR such that

‖φ‖2 =

∫ 1

0

n∑
i,j=0

φi φj ψi(z)ψj(z) dz

1/2

=
(
ΦTP Φ

)1/2
= ‖RΦ‖ . (5.8)

The norm constraint ‖φ‖2 6 s then becomes the SOCC ‖RΦ‖ 6 s.

The spectral constraint can be reduced to a set of LMIs in a similar way. Recall from
§3.1 that the spectral constraint is equivalent to the functional Qk{θ̂k} in (3.14) being

positive semidefinite for all wavenumbers k > 1 and all complex-valued functions θ̂k(z)

satisfying θ̂k(0) = 0 = θ̂′k(1). Recognising that the real and imaginary parts of θ̂k give

identical and independent contributions to Qk{θ̂k}, it suffices to restrict our attention to

real-valued functions θ̂k(z), so we define the space of test functions

Γ ..=

{
v(z) : [0, 1]→ R,

∫ 1

0

(
|v′(z)|2 + |v(z)|2

)
dz <∞, v(0) = 0, v′(1) = 0

}
. (5.9)

Recalling that we have changed variables according to

α

α− 1
τ ′(z) = ρ′(z) = φ(z)− 1, (5.10)

we can therefore replace the spectral constraint in (5.3)–(5.5) with the infinite set of
Fourier-transformed spectral constraints

Qk{v}=

∫ 1

0

{
|v′(z)|2 + k2 |v(z)|2 −Ma [φ(z)− 1] fk(z) v(1) v(z)

}
dz > 0

∀v ∈ Γ, k = 1, 2, . . . . (5.11)
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In Appendix C we show that Qk{v} is positive semidefinite for a candidate φ(z) whenever

k > kc ..=

(3
√

3

128

)1/4

Ma1/2 ‖φ− 1‖1/2∞

 , (5.12)

where b·c denotes the integer part of a number. The “cut-off” wavenumber kc represents
an upper bound on the largest critical wavenumber, i.e. the largest values of k for which
the infimum of the functional Qk in (5.11) over nonzero test functions is zero. When
k 6 kc, instead, we approximate the test function v using the same piecewise-linear
ansatz used for φ, i.e.

v(z) =

n∑
i=0

vi ψi(z). (5.13)

We also set v0 = 0 and vn = vn−1 in order to enforce the boundary conditions v(0) =
0 and v′(1) = 0, but we do not do this explicitly in (5.13) to simplify the following
discussion. Substituting (5.13) and (5.6) into Qk{v} from (5.11) yields

Qk{v} =

n∑
i,j=0

vi vj

∫ 1

0

[
ψi(z)

′ψj(z)
′ + k2 ψi(z)ψj(z)

]
dz

+ Ma

n∑
i=0

vn vi

∫ 1

0

ψi(z) fk(z) dz −Ma

n∑
i,j=0

φi vn vj

∫ 1

0

ψi(z)ψj(z) fk(z) dz. (5.14)

Recollecting that we have set v0 = 0 and vn = vn−1, the right-hand side of (5.14) is a
quadratic form of the vector of nodal values v ..= [v1, . . . , vn−1]T , and there exists an
(n− 1)× (n− 1) symmetric matrix Qk(Φ), affine with respect to Φ, such that Qk{v} =
vTQk(Φ)v. Consequently, for each wavenumber k 6 kc the Fourier-transformed spectral
constraint Qk{v} > 0 can be approximated by the LMI Qk(Φ) � 0.

Finally, it is easy to see that the piecewise-linear approximation (5.6) turns the
pointwise inequality φ(z) 6 1 into the n + 1 constraints φi 6 1, i = 0, . . . , n, which
can be written succinctly as the element-wise vector inequality Φ 6 1. Similarly, the
condition φ′(z) > 0 becomes a set of n inequalities φi−1 − φi 6 0, i = 1, . . . , n, which
can be written in the vector form

AΦ 6 0, A ..=

1 −1
. . .

. . .

1 −1

 ∈ Rn×(n+1). (5.15)

After substituting (5.6) into the objective function of (5.3) and defining

c ..=

[∫ 1

0

ψ0(z), . . . ,

∫ 1

0

ψn(z) dz

]T
, (5.16)

we can therefore approximate the infinite-dimensional variational problem (5.3) with the
finite-dimensional conic programme

max
s,Φ

− s− cTΦ

subject to Qk(Φ) � 0, k = 1, . . . , kc,

‖RΦ‖ 6 s.

(5.17)
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Similarly, (5.4) can be approximated as

max
s,Φ

− s− cTΦ

subject to Qk(Φ) � 0, k = 1, . . . , kc,

‖RΦ‖ 6 s,

Φ 6 1,

(5.18)

while (5.5) becomes

max
s,Φ

− s− cTΦ

subject to Qk(Φ) � 0, k = 1, . . . , kc,

‖RΦ‖ 6 s,

AΦ 6 0.

(5.19)

Before describing our numerical implementation of (5.17)–(5.19) in more detail, let us
remark some important aspects of our finite-dimensional approximations.

The first observation is that introducing the piecewise-linear ansatz (5.6) for φ(z)
means that only lower bounds on the optimal values of (5.3)–(5.5) can be computed, be-
cause the “true” optimal φ(z) is unlikely to be piecewise-linear. Moreover, assuming (5.13)
enforces the Fourier-transformed spectral constraint only over a particular subset of the
test function space Γ . This enlarges the set of feasible functions φ(z), so (5.17)–(5.19)
yield upper limits for lower bounds of the true optimal values of (5.3)–(5.5), respectively.
However, one expects the solutions of each conic programme (5.17)–(5.19) to converge to
that of the corresponding maximisation problem (5.3)–(5.5) as the number of collocation
points in the spatial discretisation increases.

One could also estimate the error between functions in Γ and their finite-dimensional
approximation, in order to formulate conic programmes whose optimal solutions bound
the optimal value of (5.3)- (5.5) rigorously from below. This is possible if global polyno-
mial approximation is utilised when all but the test functions in the spectral constraint
are polynomials (Fantuzzi et al. 2017). One could follow a similar line of reasoning in
each sub-interval of our piecewise-linear approximation, with the additional complication
that the function fk appearing in the spectral constraint is not polynomial. However, we
do not do so here because we do not aim to compute bounds on the Nusselt number to
the standard of a computer-assisted proof.

Finally, as already pointed out in §1, a major advantage of our computational method-
ology is that the monotonicity and convexity constraints can be implemented in a very
straightforward way. On the contrary, optimising the bound on Nu over all monotonic or
convex background fields seems considerably more challenging if one follows the classical
Euler–Lagrange variational approach, because one has to solve a set of differential
equations coupled to an inequality (in fact, a differential inequality in the convex case).

5.2. Implementation details

The conic programmes (5.17)–(5.19) were set up using the MATLAB toolbox
YALMIP (Löfberg 2004) and solved with the conic solver SDPT3 (Toh et al.
1999; Tütüncü et al. 2003). Sparsity was exploited using chordal decomposition
methods (Fukuda et al. 2000; Nakata et al. 2003; Kim et al. 2011). All computations
were run on a PC with a 3.40GHz Intel R© CoreTM i7-4770 CPU and 16Gb of RAM.

As collocation points, we used the Chebyshev nodes zi = [1−cos(πi/n)]/2, i = 0, . . . , n
in the sub-interval (0.05, 0.98), and the finer distribution zi = [1 − cos(πi/4n)]/2, i =
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0, . . . , 4n in the boundary sub-intervals [0, 0.05] and [0.98, 1]. After initial experiments
we set n = 512, giving 873 collocation points in total; our results, presented in §5.3,
change by less that 0.1% if a larger n is used.

Chebyshev nodes were chosen as they naturally cluster near the boundaries and help
resolve boundary layers near z = 0 and z = 1 in the optimal φ(z). These are expected
even if no boundary conditions are imposed because to maximise the objective function
in (5.3) one would like to choose φ(z) < 0, but setting φ(z) ≈ 1 in the bulk of the domain
is necessary to be able to satisfy the spectral constraint. However, it is possible to have
φ(z) < 0 in thin layers near the walls because the functions fk, which act as a weight
on φ in the Fourier-transformed spectral constraint (5.11), are small there for all k’s (cf.
figure 1). These observations are confirmed by the numerical results presented in §5.3.

While boundary layers can in principle be resolved with a sufficiently fine distribution
of Chebyshev points, we preferred to refine the discretisation only near the boundaries
using a secondary set of Chebyshev nodes to limit the cost of our computations. A precise
assessment of the computational burden of our conic programmes relies on technical
details of the sparsity-exploiting methods we used (Fukuda et al. 2000; Nakata et al.
2003; Kim et al. 2011) and is beyond the scope of this work. Here, we simply note that
it must grow at least linearly with the number of collocation points. Roughly speaking,
in fact, sparsity allows replacing each LMI Qk(Φ) � 0 with a set of LMIs on certain
3×3 submatrices of Qk. Since the number of rows/columns of Qk grows linearly with the
number of discretisation points, so does the number of such submatrices. Even assuming
optimistically that the computational cost of one such 3×3 LMI is fixed and that handling
a much larger number of LMIs has negligible overhead, the overall computational cost
can grow no slower than linearly with the number of collocation nodes.

One complication to the implementation of (5.17) is that the cut-off wavenumber kc
is not known a priori, but it depends on Φ according to (5.12). We therefore employ the
following iterative procedure: find the optimal Φ using an initial guess k0 for kc, update
the value of kc using (5.12), check if Qk(Φ) is positive semidefinite for all k 6 kc, and
repeat the optimisation with the updated guess for kc if any of these checks fail.

A second hurdle is that solving (5.17) with this iterative procedure becomes expensive
when the Marangoni number is large because the cut-off wavenumber kc, and therefore
the number of LMI constraints, grows proportionally to Ma1/2. For example, at Ma =
2.5 × 106 we find that the optimal φ satisfies ‖φ− 1‖∞ = 2, so (5.12) gives kc = 1 003;
when all 1 003 LMIs are considered in (5.17), SDPT3 takes more than 4 hours to converge
on our machine. In an effort to reduce the CPU time requirements, we implemented
a trial-and-error procedure, inspired by the numerical continuation method employed
by Plasting & Kerswell (2003), in which only a subset of wavenumbers are considered
in (5.17). More precisely, we progressively increased the Marangoni number according to
the update rule Mai+1 = Mai × 10p, which gives p + 1 logarithmically spaced points
between successive powers of 10. Given the critical wavenumbers k1, . . . , km at one
Marangoni number, we solved the SDP for the next Ma considering only wavenumbers
in a window of width 2r around each ki, i = 1, . . . , m, i.e. values of k such that

k ∈
m⋃
i=i

[ki − r, ki + r]. (5.20)

We then checked if the optimal solution satisfied Qk(Φ) � 0 for all remaining wavenum-
bers up to the cut-off value kc. If any of these checks failed, we added the wavenumber
with the largest constraint violation (i.e. corresponding to the matrix Qk with the most
negative eigenvalue) to the list of critical values and repeated the optimisation.
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Figure 3. Comparison between: the fully optimal bounds on the Nusselt number, computed
using the solution of (5.3) (solid line); the optimal monotonic bounds, computed using the
solution of (5.4) (dot-dashed line); the optimal convex bounds, computed using the solution
of (5.5) (thick dotted line). Also shown are the conductive Nusselt number Nu = 1 (dashed line),

the analytical bound Nu 6 0.803Ma2/7 proven in §4 (dotted line), and the DNS data (Boeck

& Thess 2001, crosses). In subfigure (a), the data are compensated by Ma−2/7 to facilitate the
visual comparison with the asymptotic scaling of the analytical bound. In subfigure (b), the

data are compensated by Ma−2/7(lnMa)1/2.

5.3. Results

The conic programmes (5.17)–(5.19) were successfully solved for Marangoni numbers
up to Ma = 109 using the procedure described in §5.2 with p = 19 and r = 10. In
all cases, at each value of Ma the optimal φ(z) was used to recover the optimal scaled
background field ρ(z) and the corresponding bound on the Nusselt number.

The most important results of our computations are the bounds on Nu, which are plot-
ted in figure 3. Also shown for comparison are: the analytical bound Nu 6 0.803 Ma2/7

from §4; the DNS results obtained by Boeck & Thess (2001); the conductive value Nu = 1,
which bounds the Nusselt number from below. The results are plotted in two ways:
compensated by a factor of Ma−2/7 to aid the visual comparison with the asymptotic
scaling of the analytical bound, and compensated by Ma−2/7(ln Ma)1/2.

The main observation is that while a gap with the DNS data remains, the fully
optimal bounds and those computed after enforcing convexity grow more slowly than
the analytical bound by (ln Ma)1/2. In particular, the fully optimal bounds exhibit the
asymptotic behaviour

Nu 6 1.285Ma2/7(ln Ma)−1/2. (5.21)

In contrast, when the background field is constrained to decrease monotonically the
bound on Nu asymptotes to 0.535Ma2/7. This suggests that the analytical bound of §4
attains the optimal asymptotic scaling available when ρ(z) is monotonic, but it may be
lowered by a logarithm upon construction of a non-monotonic background field.

Figure 4 shows the derivative of the optimal scaled background field, computed with
each of the conic programmes (5.17)–(5.19), for selected values of Ma. We plot ρ′(z)
instead of ρ(z) because by virtue of (5.1) problems (5.3)–(5.5) can be rewritten in terms
of ρ′(z) alone. Since ρ(z) can be recovered by integration using the boundary condition
ρ(0) = 0, the derivative ρ′(z) is the actual decision variable in (5.3)–(5.5). Moreover, to
ease the comparison the profiles have been normalised by the magnitude of the boundary
value ρ′(0), which converges to −2 as Ma grows as illustrated in figure 5(a). Figure 5(b)
demonstrates that in the fully optimal case the convergence is logarithmic; this was also
observed when convexity was imposed, while power-law convergence was observed for the
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Figure 4. Normalised derivatives of the optimal background fields, ρ′(z)/ |ρ′(0)|, obtained
with (5.17) (solid line), with (5.18) (dot-dashed lines), and (5.19) (dotted line) for: (a) Ma = 100;
(b) Ma = 186.12; (c) Ma = 103; (d) Ma = 104; (e) Ma = 105; and (f) Ma = 106. Inserts in (e)
and (f) show a detailed view of the boundary layers near z = 1.

Figure 5. (a) Boundary value ρ′(0) for the fully optimal (solid line), monotonic (dot-dashed
line), and convex (dotted line) background fields. All curves almost coincide. (b) Plot of the

convergence measure ρ′(0) + 2, scaled by Ma2/7(lnMa)−1/2 (solid line) and by Ma2/7 (dashed
line), for the fully optimal background fields.

monotonic profiles (these results are not show for brevity). Such evidence corroborates
our conjecture that (5.21) is the correct functional form the optimal bound on Nu.

As illustrated by figure 4, the optimal ρ′(z) is negative for Ma 6 186.12, meaning
that the corresponding scaled background field decreases monotonically for sufficiently
small Marangoni numbers. When Ma is raised, all profiles are characterised by boundary
layers separated by a bulk region where ρ′(z) ≈ 0. Note that the transition to the bulk
region is not smooth when monotonicity or convexity are enforced, and this is the main
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Figure 6. Details of the boundary layer structure of the fully optimal scaled background
field derivative ρ′(z) for Ma > 104. The dot-dashed, dashed, and solid lines in (b) indicate the
approximate scaling laws (5.23a)–(5.23c), respectively.

reason for preferring the piecewise-linear approximations of §5.1 to the global polynomial
approximation used in previous works (Fantuzzi & Wynn 2016a,b; Fantuzzi et al. 2017).

In the fully optimal case, ρ′(z) changes sign inside both boundary layers to reach
positive local maxima, so the corresponding scaled background field is characterised by
non-monotonic boundary layers. Enforcing monotonicity removes these local maxima and
makes the boundary layers thinner, while convexity prevents the local maximum near
z = 0 and makes ρ′(z) constant across the boundary layer near z = 1.

Further details of the boundary layer structure of the fully optimal profiles for Ma >
104 are given in figure 6 (very similar results for the optimal convex profiles are not
shown for brevity). Letting zbot and ztop denote the coordinates of the positive local
maxima of ρ′(z) near z = 0 and z = 1, respectively, we take δ ..= zbot and ε ..= 1− ztop
as measure of the thickness of each boundary layer. The boundary layer near the bottom
of the domain (z = 0) becomes approximately self-similar at large Marangoni numbers,
and least-squares power-law fits to the data in figures 6(a) and 6(c) for Ma > 107 return

δ ≈ 3.8 Ma−0.26, ρ′(zbot) ≈ 0.07. (5.22)

Note that the scaling exponent of δ is not far from −2/7 ≈ −0.286, suggesting that
the width of the boundary layer near z = 0 is one of the leading factors determin-
ing the scaling of the bound on Nu. In fact, we conjecture that asymptotically δ =
O(Ma−2/7(ln Ma)1/2), such that Nu = O(δ−1), but unfortunately the finite precision
of our data does not permit to clearly identify logarithmic corrections. To obtain more
precise values we should solve the conic programmes (5.17)–(5.18) to a level of accuracy
beyond the capabilities of SDPT3, as well as study larger Marangoni numbers (this issue
will be discussed further in §6).

The situation is more complicated for the boundary layer near z = 1. In figure 6(b) we
can identify three distinct regions characterised by different scaling laws for ε:

ε ≈ 1.65 Ma−0.36 for Ma / 5× 104, (5.23a)

ε ≈ 11.8 Ma−0.54 for 5× 104 / Ma / 3× 106, (5.23b)

ε ≈ 24.3 Ma−0.58 for Ma ' 3× 106. (5.23c)
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Figure 7. Bifurcation diagrams for the critical wavenumbers in: (a) the conic programme (5.17)
for the fully optimal background fields; (b) the conic programme (5.18) for the optimal monotonic
background fields; (c) the conic programme (5.19) for the optimal convex background fields.

Figure 8. (a) Convergence of the optimal balance parameter α?, computed using the optimal
solution of (5.3) and (3.33), to the asymptotic value 2. (b) Plot of the difference α? − 2, scaled

by Ma2/7(lnMa)−1/2 (solid line) and by Ma2/7 (dashed line).

In the first and third regions we could also determine approximate scaling laws for the
peak value ρ′(ztop):

ρ′(ztop) ≈ 0.34 Ma−0.01 for Ma / 5× 104, (5.24a)

ρ′(ztop) ≈ 0.04 Ma0.16 for Ma ' 3× 106. (5.24b)

Once again, these scaling laws are only tentative due to the finite precision to which the
conic programmes for the optimal bounds could be solved. However, we remark that the
large scatter in the the data points in figure 6(b) is simply due to plotting ε after rescaling
by Ma0.54, which at large Ma amplifies small inaccuracies in our numerical data.

Changes in the scaling of the boundary layer near z = 1 correspond to bifurcations in
the critical wavenumbers for the conic programme (5.17). As illustrated in figure 7(a),
new critical wavenumbers appear at large values of k for Ma ≈ 4×105 and Ma ≈ 3×106.
Another intermediate branch of critical wavenumbers appears for Ma ≈ 108, but this does
not seem to influence the scaling of the boundary layer. Such bifurcations can be explained
in terms of the interactions in the Fourier-transformed spectral constraint (5.11) between
the boundary layer of ρ′(z) = φ(z) − 1 and the function fk(z), which is almost entirely
supported near z = 1 at large k. As shown in figures 7(b)–(c), similar bifurcations
were observed when solving (5.19) but not when solving (5.18), probably because the
boundary layer near z = 1 of the optimal monotonic background fields is too thin to
allow interesting interactions for wavenumbers below the cut-off value kc.

To conclude this section, we plot in figure 8 the variation with Ma of the optimal
balance parameter α?, computed using (3.33) and the fully optimal background field.
The results are interesting for two reasons. First, the convergence of α? to 2 as Ma is
raised is logarithmic, giving further evidence in support of (5.21). Second, the results
suggest that the choice α = 2 in the original work by Hagstrom & Doering (2010)—
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presumably motivated only by the convenience of eliminating the linear terms when
combining (3.5), (3.6a), and (3.6b) in the background method analysis—is optimal, at
least as far as the asymptotic behaviour of the bound as Ma →∞ is concerned. Contrary
to what has been observed in previous works (see e.g. Plasting & Kerswell 2003; Wen
et al. 2015), this means that not only the optimisation of the balance parameters has no
influence on the asymptotic scaling of the bound (cf. §4), but it also does not improve the
optimal prefactor available to Hagstrom & Doering’s original upper-bounding principle.

6. Discussion

6.1. Towards an improved bound

The results presented in §5.3 suggest that Hagstrom & Doering’s bound Nu 6
O(Ma2/7) may be improved by the logarithmic factor (ln Ma)−1/2. Despite the strong
numerical evidence, however, whether the optimal bound scales logarithmically when
Ma → ∞ remains uncertain due to the limited range of Marangoni numbers spanned
the present investigation (see §6.2 for more on this issue). In particular, we cannot rule
out the occurrence of further bifurcations in the critical wavenumbers that may cause a
transition to a pure power-law behaviour with scaling exponent of 2/7.

Uncertainty about the true asymptotic scaling notwithstanding, our numerical results
demonstrate that if the current analytical bound Nu 6 O(Ma2/7) can be improved, to
do so requires a background temperature profile with non-monotonic boundary layers.
More precisely, the optimal convex background fields and the corresponding bounds on
Nu are evidence that what is needed is a relatively simple non-monotonic boundary layer
near z = 1, while non-monotonicity near z = 0 only lowers the prefactor.

Taking advantage of these observations to improve the bound on Nu analytically,
however, is likely to require a careful analysis of the sign-indefinite term in each Fourier-
transformed spectral constraint, which we restate here in terms of the variable ρ(z) in
the slightly rearranged form

Qk{v}=‖v′‖22 + k2 ‖v‖22 −Ma v(1)

∫ 1

0

ρ′(z) fk(z) v(z) dz > 0 ∀v ∈ Γ. (6.1)

For example, simply estimating∣∣∣∣Ma v(1)

∫ 1

0

ρ′(z) fk(z) v(z) dz

∣∣∣∣ 6 Ma |v(1)|
∫ 1

0

|ρ′(z)| |fk(z)| |v(z)| dz (6.2)

and requiring (as we have done in appendix B) that

‖v′‖22 + k2 ‖v‖22 −Ma |v(1)|
∫ 1

0

|ρ′(z)| |fk(z)| |v(z)| dz > 0 ∀v ∈ Γ, (6.3)

forces the optimal ρ to decrease monotonically. In fact, if ρ satisfies (6.3) and ρ′(z) > 0
for z ∈ U ⊂ [0, 1], the profile

ρ̃′(z) ..=

{
ρ′(z), z ∈ [0, 1] r U ,
0, z ∈ U ,

(6.4)

also satisfies (6.3), but decreases monotonically and gives a larger objective value
in (3.26). In light of the numerical results presented in §5.3, we expect that any bound

obtained using the estimate (6.2) will not be better than Nu 6 O(Ma2/7).
A better approach is to reformulate the Fourier-transformed spectral constraint (6.1)
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before applying any estimates. Without any loss of generality, let δ ∈ (0, 1) and write

ρ′(z) =

{
g(z), 0 6 z 6 δ,

h(z), δ 6 z 6 1.
(6.5)

Here, δ represents the thickness of the boundary layer of the optimal background field
near z = 0. With this choice, the Fourier-transformed spectral constraint (6.1) becomes

Qk{v} = ‖v′‖22 + k2 ‖v‖22 −Ma v(1)

∫ δ

0

g(z) fk(z) v(z) dz

−Ma v(1)

∫ 1

δ

h(z) fk(z) v(z) dz > 0 ∀v ∈ Γ. (6.6)

Since this inequality is homogeneous in v and holds when v(1) = 0, we may restrict
attention to test functions normalised such that v(1) = 1. Upon adding and subtracting

Ma
∫ 1

δ
h(z)fk(z) dz we then need to check that

‖v′‖22 + k2 ‖v‖22 −Ma

∫ δ

0

g(z) fk(z) v(z) dz

+ Ma

∫ 1

δ

h(z) fk(z) [1− v(z)] dz −Ma

∫ 1

δ

h(z)fk(z) dz > 0. (6.7)

If
∫ 1

δ
h(z)fk(z) dz < 0, the last term in (6.7) gives a net positive contribution to the

spectral constraint, and can be used to control the sign-indefinite terms. Recalling from
figure 1 that fk(z) 6 0, this requires h(z) > 0 over a sufficient portion of the interval
(δ, 1), so the background field ρ does not decrease monotonically. Moreover, h(z) should
be supported in a boundary layer near z = 1 to be able to control the fourth term in (6.7).
Consequently, a non-monotonic boundary layer near z = 1 helps enforcing the spectral
constraint. The situation is similar in infinite-Pr Rayleigh–Bénard convection (Doering
et al. 2006; Otto & Seis 2011), so this observation is perhaps not surprising.

In addition to casting light on the role of the surface boundary layer, identity (6.7)

may also offer a starting point to improve the bound Nu 6 O(Ma2/7) analytically.
Recalling the boundary condition v(0) = 0 and that v(1) = 1 by virtue of our choice of
normalisation for v, one possible approach is to use the fundamental theorem of calculus
and the Cauchy–Schwarz inequality to bound∣∣∣∣∣

∫ δ

0

g(z) fk(z) v(z) dz

∣∣∣∣∣ 6
∫ δ

0

|g(z) fk(z)|
∣∣∣∣∫ z

0

v′(t) dt

∣∣∣∣ dz

6 ‖v′‖2
∫ δ

0

|g(z) fk(z)|
√
z dz (6.8)

and ∣∣∣∣∫ 1

δ

h(z) fk(z) [1− v(z)] dz

∣∣∣∣ 6 ∫ 1

δ

|h(z) fk(z)|
∣∣∣∣∫ 1

z

v′(t) dt

∣∣∣∣ dz

6 ‖v′‖2
∫ 1

δ

|h(z) fk(z)|
√

1− z dz. (6.9)
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Defining

ak ..=

∫ δ

0

|g(z) fk(z)|
√
z dz, (6.10a)

bk ..=

∫ 1

δ

|h(z) fk(z)|
√

1− z dz, (6.10b)

ck ..= −
∫ 1

δ

h(z)fk(z) dz (6.10c)

to ease the notation, a sufficient condition for (6.7) is that

‖v′‖22 −Ma (ak + bk) ‖v′‖2 + Ma ck > 0, (6.11)

which in turn is satisfied if

ak + bk 6 2

√
ck

Ma
. (6.12)

Given a candidate background field, condition (6.12) can be checked for all wavenumbers
up to the ‘cut-off’ wavenumber kc in (5.12).

Improving the bound Nu 6 O(Ma2/7), however, may not be straightforward. To
illustrate one of the difficulties, let us consider a simple background field. Motivated
by figure 5(b) and the shape of the derivatives of the optimal convex background fields
in figure (4), we fix

g(z) = −2, h(z) =

{
0, δ 6 z < 1− ε,
γ, 1− ε 6 z 6 1,

(6.13)

with γ > 0 a constant (independent of the Marangoni number) and ε� 1 but such that

1/ε 6 kc = O(Ma1/2). When k 6 1/ε we can use the Taylor expansions fk(z) = O(z2)
near z = 0 and fk(z) = O(k(z − 1)) near z = 1 to estimate

ak = O
(
δ7/2

)
, bk = O

(
γ k ε5/2

)
, ck = O

(
γ k ε2

)
. (6.14)

Using these estimates, (6.12) can be rearranged as

δ7/2 6 O

(
2 ε

√
γ k

Ma

(
1−

√
γ kMa ε3

))
. (6.15)

When k = O(1) the two sides of (6.15) could be balanced by taking ε = O(Ma−1/3) and

δ = O(Ma−5/21), and upon computing the bound on Nu we find

Nu 6
2

2δ − γε−
√
γ(γ + 2)ε

= O

(
1

δ

)
= O

(
Ma5/21

)
. (6.16)

Interestingly, the exponent 5/21 ≈ 0.238 is extremely close to that of the best power-
law fit Nu = O(Ma0.24) to the DNS data by Boeck & Thess (2001, see equation (4)
in their paper). In these simulations convection takes the form of stationary rolls with
energy only at low wavenumbers, and the deviation from the theoretical asymptotic
scaling exponent 2/9 ≈ 0.228 can be attributed to the contribution to the heat transfer
of the thermal boundary layer near the surface (see the discussion after equation (13) in
Boeck & Thess, 2001). Although this contribution is expected to vanish as Ma →∞, the
background method could yield a bound that agrees well with observations at least over
a finite range of Marangoni numbers if the stability of the rolls were deduced rigorously
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from the governing equations. Given the lack of such information, however, (6.12) must

be satisfied for all wavenumbers up to the cut-off value kc = O(Ma1/2). In particular,
setting k = 1/ε (which is no larger than kc by assumption) shows that we must choose ε 6
O(Ma−1/2) and δ 6 O(Ma−2/7), so the eventual bound on Nu cannot grow more slowly

thanO(Ma2/7). The issue remains when we let γ increase with Ma to mimic the behaviour
of the numerically optimal profiles (cf. figure 6(d)), because the apparent gain in (6.15)

is exactly outbalanced by the need of testing wavenumbers up to kc = O(γMa1/2). We
therefore expect that to improve Hagstrom & Doering’s scaling using (6.12) will require
careful estimates of ak, bk and ck at large wavenumbers, perhaps in conjunction with a
more sophisticated choice of background field.

6.2. Reaching the asymptotic regime: current challenges for conic optimisation

As mentioned at the beginning of §6.1, the true asymptotic nature of our numerical
bound remains uncertain due to the limited range of Marangoni numbers that could be
studied. Clearly, this kind of uncertainty is inherent to any kind of numerical investigation
irrespective of which computational tools are employed. Nonetheless, the challenges faced
by conic programming in reaching the asymptotic regime deserve further discussion.

The main limitation to extending the results presented in §5.3 to larger values of Ma is
computational cost: proceeding from Ma = 108 to Ma = 109 took more than 48 hours on
our machine, and to achieve significant further progress would require computational
resources beyond those available to the present investigation. One difficulty is that
at large Marangoni numbers checking whether a candidate background field satisfies
the Fourier-transformed spectral constraints up to the cut-off wavenumber kc becomes
a burden. For example, kc = 20 073 at Ma = 109, meaning that 20 073 eigenvalue
decompositions must be computed after each iteration of the wavenumber-tracking
procedure described in §5.2. The situation is worsened by the occurrence of bifurcations
in critical wavenumbers, because more iterations are needed to correctly track all critical
branches. Performance could be not improved by taking smaller steps in Ma, because
doing so slows progress towards higher Marangoni numbers. Increasing the parameter r
in (5.20) also does not help much, because the cost of adding more LMIs to our conic
programmes at each iteration offsets the reduction in number of iterations required to
identify the critical wavenumbers.

A possible solution to the critical wavenumber identification problem could be to apply
the time-marching algorithm of Wen et al. (2013, 2015) to the optimality conditions for
our conic programmes (5.17)–(5.18). This method has been reported to locate the correct
critical wavenumbers efficiently, although convergence to the optimal background field
can be slow (Wen et al. 2015). Fast but less accurate solvers for conic programmes (such
as SCS by O’Donoghue et al. 2016) may also have similar benefits and drawbacks,
with the additional advantage that finely tuned open-source implementations are readily
available. Irrespectively of which method is utilised, once the critical wavenumbers have
been identified the optimal solution can be computed using accurate conic programming
packages such as SDPT3 (used in this work).

Our numerical method and the possible improvements discussed above can of course be
applied beyond Bénard–Marangoni convection. However, to study the asymptotic regime
of more complex background method problems will require overcoming some additional
obstacles. Spectral constraints with multiple test functions, such as those encountered
in shear flows (Plasting & Kerswell 2003; Fantuzzi & Wynn 2016a) or finite-Prandtl-
number convection (Doering & Constantin 1996; Otero 2002), yield conic programmes
with larger LMIs. While current state-of-the-art algorithms for conic programming can
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handle many small LMIs very efficiently, the computational cost of a single LMI grows as
a nonlinear function of its size. This problem is exacerbated for problems with two-
and higher-dimensional background fields that cannot be Fourier-transformed in the
horizontal directions, because after discretisation one obtains a single LMI instead of
a set of smaller, independent LMIs corresponding to each wavevector.

On the other hand, the (current) unfavourable scalability of algorithms for conic
programming can be mitigated by taking advantage of special properties of the particular
background field problem at hand. For instance, the spectral constraint often presents
symmetries that can be exploited to reduce the number of degrees of freedom needed
to discretise the background field or the test functions (however, this is not the case
for Bénard–Marangoni convection). In addition, the very choice of discretisation method
plays an important role because it directly impacts the sparsity of the eventual LMI. The
piecewise-linear approximation method considered in this work is particularly attractive
in this respect because it results in a chordal sparsity pattern, meaning that the nonzero
entries of the LMI approximation of the spectral constraint can be represented by a
chordal graph (a thorough discussion of these concepts is beyond the scope of this work,
and we refer the interested reader to Fukuda et al. 2000, Section 2). The same is true when
one uses multidimensional piecewise-polynomial representations in the spirit of finite-
element methods. Chordal sparsity enables one to decompose a large LMI into multiple
smaller ones, at the expense of introducing extra optimisation variables (Fukuda et al.
2000; Nakata et al. 2003; Kim et al. 2011). This procedure can be automated, for instance
using the MATLAB toolbox SparseCoLO (Fujisawa et al. 2009). As mentioned above,
current algorithms for conic programming can handle multiple small LMIs much more
efficiently than a single large one. Decomposition techniques based on chordal sparsity
proved extremely effective in our study of Bénard–Marangoni convection and we expect
the same to be true for other background method problems.

Finally, the development of efficient algorithms for large-scale conic programmes and
implementations that take advantage of modern parallel computer architectures is a
very active area of research (Sun et al. 2014; Pakazad et al. 2015; Madani et al. 2015;
O’Donoghue et al. 2016; Zheng et al. 2017a,b). While it remains imperative to exploit all
available symmetries and sparsity, advances at the algorithmic level promise to extend
the ability of conic programming to reach the asymptotic regime of background method
problems more complex than the one considered in this work.

7. Conclusion

This work studied the vertical heat transfer in Bénard–Marangoni convection of
a fluid layer with infinite Prandtl number by means of rigorous upper bounds on
the Nusselt number. First, the background method analysis by Hagstrom & Doering
(2010) was extended to include balance parameters and formulate a new variational

principle for the bound. Using this we proved that Nu 6 0.803 ×Ma2/7, reducing the
prefactor of the previous best bound by approximately 4.2%, but we also showed that
optimising the balance parameters does not affect the asymptotic scaling of the optimal
bounds compared to Hagstrom & Doering’s original formulation. We then employed conic
programming to optimise the bound on Nu over all background fields, as well as over
two smaller families constrained by either a monotonicity or a convexity constraint. The
main result of our numerical investigation was the observation that the fully optimal
bounds have the form Nu 6 O(Ma2/7(ln Ma)−1/2) for large Marangoni numbers. We
also demonstrated that to achieve a logarithmic bound requires a background field with
a non-monotonic boundary layer near the surface of the fluid.
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Whether the logarithmic scaling observed numerically can be proven analytically
remains an open question, and is the subject of ongoing research. The analysis presented
in §6 suggests a way forward by replacing the spectral constraint on the background
field with the sufficient condition (6.12). Using (6.12) is an attractive option because it
is easier to check than the spectral constraint for a candidate background field, and the
role of non-monotonicity is apparent. Moreover, the fact that enforcing (6.12) at large
wavenumbers seems to constrain the bound on Nu is reminiscent of the bifurcations in
critical wavenumbers observed in our numerical investigation (cf. figure 7). In summary,
condition (6.12) seems to capture the essential features of the spectral constraint.

Should (6.12) prove too strong, the analysis of the energy stability problem (Fantuzzi
& Wynn 2017) may be adapted to derive an inequality that exactly enforces each Fourier-
transformed spectral constraint. The disadvantage is that such an inequality may not be
analytically tractable except for very simple choices of the background field. On the other
hand, it may be possible to check this condition numerically and confirm that a candidate
background field can indeed achieve a logarithmic bound, leaving “only” the task of
constructing the correct estimates to prove so rigorously. Alternatively, one may consider
the Lagrangian dual of the variational problem obtained with background method. This
amounts to constructing the temperature and velocity fields that maximise the heat
transfer subject to the linearised momentum equation, the boundary conditions, and
suitably averaged versions of the advection-diffusion equation for the temperature (for
a detailed discussion of the duality between these two approaches in the context of
Rayleigh–Bénard convection, we refer the reader to Plasting & Ierley 2005). However,
only the fields achieving the maximal heat transfer yield a fully rigorous bound, so
the maximisation must be solved exactly. Moreover, compared to the Rayleigh–Bénard
problem the construction of a suitable hierarchy of nested boundary layers using Busse’s
“multi-α” solution method (see for example Busse 1979) is complicated by the lack of
vertical symmetry and the Neumann conditions at the surface of the fluid.

Irrespectively of how the variational problem for the upper bound on Nu is analysed,
however, it is evident from the present numerical investigation that the background
method for the temperature field (or its dual formulation) cannot close the gap with the

phenomenological prediction Nu = O(Ma2/9) by Boeck & Thess (2001). It is possible
that Boeck & Thess’s assumption that steady convection rolls remain stable as Ma →∞
is incorrect, making a scaling exponent of 2/9 unattainable with any bounding method.

To prove so rigorously requires a lower bound on Nu that grows faster than Ma2/9, which
can also not be achieved with the background method because the unstable conduction
solution saturates the constant lower bound Nu > 1. Consequently, further numerical
simulations in the high-Ma seem essential to investigate the issue. The observation of
steady convection rolls would provide further supporting evidence for Boeck & Thess’s
phenomenological prediction. Determining the stability of the steady rolls is of interest
also to reveal if the bifurcations in critical wavenumbers observed in our computations
correspond to yet unobserved physical instabilities.

If Boeck & Thess’s phenomenological prediction is corroborated by further DNSs, to
confirm it through rigorous bounds on Nu will necessarily require bounding techniques
beyond the background method. Unfortunately, the formulation of a wall-to-wall optimal
transport problem in the spirit of Hassanzadeh et al. (2014) and Tobasco & Doering
(2017) does not appear suited to the study Bénard–Marangoni convection at infinite-Pr .
In fact, the optimal transport approach treats the temperature as a passively advected
and diffusing scalar, and one looks for the (generally time-dependent) incompressible
velocity field that maximises the passive vertical transport of heat subject to a maximum
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power budget. However, in infinite-Pr Bénard–Marangoni convection the flow velocity is
a linear function of the temperature field, which is effectively the only dynamical variable.
This coupling is crucial in the background method analysis, so improving our bound on
Nu without taking it into account seems unlikely.

It would then be tempting to formulate the “ultimate” optimal wall-to-wall transport
problem using the temperature as the decision variable, and let the flow velocity be
specified as a function of it. However, this corresponds to searching for the exact
solution of the equations of motion (2.1a)–(2.1c) with maximal heat transfer, so any
significant progress does not appear possible. Difficulties remain when one drops the
time dependence: maximising the heat transfer among the steady solutions is not much
easier, and in any case the eventual bound would rely on the unproven assumption
that unsteady flows cannot transport more heat than steady ones. Nonetheless, the
construction of Ma-dependent exact solutions remains of interest because knowledge
of a (possibly unstable) flow with Nusselt number Nuss places a strict limit on what can
be achieved by upper-bounding theory. In particular, any bounds that apply equally to
all solutions of (2.1a)–(2.1c) cannot be better than Nuss. Moreover, any flow with heat

transfer Nuss � O(Ma2/9) would demonstrate that Boeck & Thess’s phenomenological
scaling applies at most to a particular subset of all possible convective flows.

While improving the rigorous upper bound on Nu using the “ultimate” wall-to-wall
optimal transport approach described above appears challenging, it may be possible
to consider successively weaker, tractable relaxations of it. The idea stems from the
aforementioned realisation that the background method analysis is dual to the problem
of maximising the heat transfer over all temperature (and associated velocity) fields
that satisfy a set of constraints obtained by averaging the heat equation (Plasting
& Ierley 2005). The upper bound on Nu may therefore be improved by including
additional constraints implied by the heat equation, but not the heat equation itself.
A simple way to do so is through a general bounding framework that encompasses the
background method (Chernyshenko et al. 2014; Chernyshenko 2017). The essence of this
approach is to construct a functional V of the flow variables subject to a positivity
condition akin to the spectral constraint in the background method. Each term in this
functional can be interpreted as enforcing a particular constraint implied by the governing
equations. Taking V to be the volume average of a quadratic polynomial of the flow
variables gives the same bound as the background method (Chernyshenko 2017), but
experience with finite-dimensional systems (Fantuzzi et al. 2016; Goluskin 2016) indicates
that considering more general functionals—for instance, volume averages of higher-
than-quadratic polynomials of the flow variables—could yield significant improvements.
Although the construction of suitable functionals may be beyond the reach of purely
analytical work, progress can be assisted by computations that utilise conic programming
techniques similar to those applied in this paper. Whether the numerical bounds can
reach the asymptotic regime is of course highly dependent on the availability of efficient
algorithmic tools for conic programming. Promising recent developments in this field (see
for example O’Donoghue et al. 2016; Zheng et al. 2017a,b), however, give us hope
that Bénard–Marangoni convection and other turbulent hydrodynamic systems may be
studied successfully in the near future.

Appendix A. Minimisation of Q0{θ̂0}
Let θ̂0(z) = v(z) to simplify the notation. It is not difficult to check using the calculus

of variations that the infimum of Q0 over all test functions v that satisfy v(0) = 0 and
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v′(1) = 0 is not attained unless β = 2. This difficulty can be resolved by noticing that

inf
v(0)=0,
v′(1)=0

Q0{v} = min
A

min
v(0)=0,
v(1)=A

Q0{v}. (A 1)

In other words, we can replace the Neumann BC v′(0) = 0 with the Dirichlet condition
v(1) = A, solve the Dirichlet problem

Q?0(A) ..= min
v(0)=0,
v(1)=A

Q0{v}, (A 2)

and minimise Q?k(A) over A. Equation (A 1) is justified because for each value A, the
minimum of the Dirichlet problem can be approximated with arbitrary accuracy by a
function that satisfies v′(1) = 0; for example, if v? is the minimiser of the Dirichlet
problem (A 2) for a given A, take

v(z) =

{
v?(z), 0 6 z 6 1− δ,
v?(1− δ), 1− δ 6 z 6 1

(A 3)

for δ > 0 sufficiently small. A rigorous proof is omitted for brevity, but a similar argument
can be found in a previous work by the authors (Fantuzzi & Wynn 2017, appendix C).

The minimiser of the Dirichlet problem (A 2) satisfies the Euler–Lagrange equation

− 2 v′′ − α− 2

α− 1
τ ′′ = 0 (A 4)

subject to the BCs v(0) = 0 and v(1) = A, and is given by

v?(z) =
α− 2

2(α− 1)
[τ(1) z − τ(z)] +Az. (A 5)

The corresponding minimum is

Q?0(A) = A2 +
(α− 2) τ(1) + α− β

α− 1
A+

(α− 2)2
[
|τ(1)|2 − ‖τ ′‖22

]
4(α− 1)2

. (A 6)

An expression for the minimum over A is readily found, and it can be rearranged in the

form (3.16) after noticing that τ(1) =
∫ 1

0
τ ′(z) dz by virtue of (3.2).

Appendix B. An improved bound on Nu

Consider a piecewise-linear scaled background field of the form

ρ(z) =

{
−Rz 0 6 z 6 δ,

−Rδ, δ 6 z 6 1.
(B 1)

The boundary layer slope R > 0 and thickness δ > 0 should be chosen to satisfy the
spectral constraint (3.19) whilst optimising the bound on the Nusselt number,

1

Nu
>

1− ‖ρ′ + 1‖2 − ρ(1)

2
=

1−
√

1 +R (R− 2) δ +Rδ

2
. (B 2)

Recall from §3 that the spectral constraint is equivalent to the quadratic form Qk{θ̂k}
in (3.14) being positive semidefinite for all wavenumbers k > 1, and recall that we have

changed variables such that α/(α − 1)τ ′(z) = ρ′(z). Although the test function θ̂k is

complex-valued, the contributions of its real and imaginary parts to Qk{θ̂k} are identical
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and independent, so it suffices to consider real-valued test functions. We conclude that
R and δ must be chosen such that, for all k > 1,

Qk{v} = ‖v′‖22 + k2 ‖v‖22 −Ma Rv(1)

∫ δ

0

fk(z) v(z) dz > 0 (B 3)

for all real-valued functions v(z) that satisfy the BCs v(0) = 0 and v′(1) = 0.

Using the BC v(0) = 0 and the Cauchy–Schwarz inequality, we can bound

|v(1)| =
∣∣∣∣∫ 1

0

v′(z) dz

∣∣∣∣ 6 ‖v′‖22 . (B 4)

Moreover, since |fk(z)| = −fk(z) 6 c z2 for c ≈ 0.943 (Hagstrom & Doering 2010),∣∣∣∣∣Ma Rv(1)

∫ δ

0

fk(z) v(z) dz

∣∣∣∣∣ 6 Ma Rc

∣∣∣∣∣
∫ δ

0

∫ z

0

z2 v′(ξ) dξ dz

∣∣∣∣∣ ‖v′‖2
= Ma Rc

∣∣∣∣∣
∫ δ

0

∫ δ

ξ

z2 v′(ξ) dξ dz

∣∣∣∣∣ ‖v′‖2
=

Ma Rc

3

∣∣∣∣∣
∫ δ

0

(
δ3 − ξ3

)
v′(ξ) dξ dz

∣∣∣∣∣ ‖v′‖2
6

Ma Rc

3

√∫ δ

0

(δ3 − ξ3)
2

dξ ‖v′‖22

=
Ma Rc δ7/2√

14
‖v′‖22 . (B 5)

Inequality (B 3) therefore holds if

δ =

(
Ma Rc√

14

)−2/7
. (B 6)

With this choice of δ, the asymptotic behaviour of the bound (B 2) as the Marangoni
number tends to infinity is

1

Nu
>

(√
14

c

)2/7
R (4−R)

4R2/7
Ma−2/7, (B 7)

and choosing R = 5/3 to maximize the prefactor we arrive at

Nu 6
36

35

(
5 c

3
√

14

)2/7

Ma2/7 ≈ 0.803 Ma2/7 as Ma →∞. (B 8)

Appendix C. Computation of the cut-off wavenumber kc

Since any test function v ∈ Γ vanishes at z = 0, integration by parts shows that for
any constant γ > 0

γ |v(1)|2 − 2 γ

∫ 1

0

v v′ dz = 0. (C 1)
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Figure 9. The quantity k3/ ‖fk‖22 (solid line) with its large- and small-wavenumber
asymptotes (dotted and dashed lines, respectively). A circle marks the minimum at k ≈ 1.633.

Adding this to the quadratic form Qk{v} in (5.11) and using the Cauchy–Schwarz
inequality to estimate the sign-indefinite terms yields

Qk{v}> ‖v′‖
2
2 + k2 ‖v‖22 + γ |v(1)|2 − 2 γ ‖v′‖2 ‖v‖2

−Ma ‖(φ− 1) fk‖2 |v(1)| ‖v‖2 . (C 2)

Consequently, Qk{v} > 0 if there exists a scalar ω such that

‖v′‖22 − 2 γ ‖v′‖2 ‖v‖2 + ωk2 ‖v‖22 > 0, (C 3a)

(1− ω) k2 ‖v‖22 −Ma ‖(φ− 1)fk‖2 |v(1)| ‖v‖2 + γ |v(1)|2 > 0. (C 3b)

Recalling that a quadratic form ax2+bxy+cy2 is non-negative for all x and y if b2 6 4ac,
choosing ω > 0 and γ =

√
ωk to complete the square in (C 3a) implies that Qk{v} > 0 if

Ma2 ‖(φ− 1) fk‖22 6 4 (1− ω)
√
ω k3. (C 4)

After setting ω = 1/3 to maximise the right-hand side, estimating

‖(φ− 1) fk‖2 6 ‖φ− 1‖∞ ‖fk‖2 , (C 5)

and rearranging, we arrive at

k3

‖fk‖22
>

3
√

3

8
Ma2 ‖φ− 1‖2∞ . (C 6)

As illustrated in figure 9, the quantity k3/ ‖fk‖22 has a minimum at k = kcrit ≈ 1.633,
grows asymptotically to 1680 k−1 as k → 0, and quickly asymptotes 16 k4 for k > kcrit.
In fact k3/ ‖fk‖22 > 16k4 so (C 6)—and hence the spectral constraint—holds for all
wavenumbers larger than the critical value

kc ..=

(3
√

3

128

)1/4

Ma1/2 ‖φ− 1‖1/2∞

 . (C 7)
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