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Exact localized states in plane Couette flow
Plane Couette flow is a three-dimensional flow confined between two parallel walls moving
in opposite directions and is known to possess a linearly stable laminar state for all
Reynolds numbers. Transition to turbulence occurs through finite-amplitude perturbations
the most dangerous of which often spatially localized (Pringle et al., Phys. Fluids 27,
064102 (2015)). Exact spatially localized solutions found in plane Couette flow on two
intertwined branches in a phenomenon known as snaking (Schneider et al., Phys. Rev.
Lett. 104, 104501 (2010)) have recently been shown to be related to optimal perturbations
with respect to the transient energy growth (Olvera et al., Phys. Rev. Fluids 2, 083902
(2017)). In this study, we use them as initial conditions for time-integration for a range of
Reynolds numbers up to Re = 350 and investigate their dynamics.
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Fig. 1: Sketch of the plane Couette flow configuration and its laminar solution.

Fig. 2: Bifurcation diagram of the snaking described by the localized equilibria (EQ,
blue line) and travelling waves (TW, red line) of plane Couette flow. The saddle-nodes
of both branches are labelled Si, where i is the number of rolls the saddle-node state
consists of. The spatially periodic Nagata solutions are represented in dash lines.
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Fig. 3: Relaminarisation times trelam for EQ (blue) and TW (pink) initial conditions for
Re ∈ [180;320]. The curves have been shifted according to the spanwise width of the
initial condition.
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Fig. 4: Map of the parameter space (Re,Si). The regions of non-trivial dynamics
labelled R1, R2, R3, R3a and R4 are separated by plateaux (P) of relatively low
relaminarisation times. Characteristic relaminarisation times are denoted by t .

Region R1 – peaks

•Peaks: Ren+1 − Res = α (Ren − Res)

• Local minima: tn = t0 + βn
=⇒ trelam =

β
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Fig. 5: Relaminarisation times trelam in R1 for initial condition S5.

Region R3 – long-lived chaos

•Spot dynamics may result in long-lasting simulations: trelam � 1000
• The relaminarisation time is sensitive to changes in Re
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Fig. 7: Relaminarisation times trelam in R3 for initial condition S9.

Region R2 – splitting

• The initial state splits into two spots that start oscillating
•At the boundaries of R2, spots have the same width after splitting for different Si
• The relaminarisation time is trelam ≈ 103

Fig. 6: Relaminarisation times trelam in R2 for initial condition S13.

Region R3 – simulation at Re = 248.5

Fig. 8: Spatiotemporal evolution of the streamwise- and wall-normal-averaged kinetic
energy at Re = 248.5 for initial condition S9 (black dot in figure 7).

Region R4 – transition to turbulence

The majority of simulations are long-lasting with trelam � 1000.
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