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Reynolds experiment
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Plane Couette flow

Incompressible Navier–Stokes equation:

∂tu+ (u · ∇)u = −∇p+
1
Re

∇2u

∇ · u = 0

Streamwise and spanwise directions: periodic BCs

Wall-normal direction: no-slip BCs

x

y

Ulam = (y, 0, 0)

u|y=1 = (1, 0, 0)

u|y=−1 = (−1, 0, 0)
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Moehlis–Faisst–Eckhardt model1

Low-dimensional model is
obtained by Galerkin projection:

u(x, t) =
9∑
j=1

aj(t)uj(x).

9-dimensional system of ODEs:

d
dt
a = f (a; Re, Γx, Γz),

where a(t) = [a1(t), . . . , a9(t)]T .

Parameters:

• Domain wavelengths:
Γx = 1.75π, Γz = 1.2π

• Reynolds number:
Re ∈ [200; 500]

Sustained turbulence: Re & 320
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1Moehlis et al., New J. Phys., 6 56 (2004)
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Laminarization (Re = 300)

• Turbulence in shear flows is a “leaky” attractor2

• As a result, all trajectories eventually end up with laminarization
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Echo State Network (ESN)

Echo State Network is a reservoir-computing architecture:

x(t) = tanh(Winu(t) +Wx(t −4t)),
u(t +4t) = Woutx(t).

where

• Win and W are random sparse matrices
• Wout is to be trained by solving the normal equation
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Short-term prediction (Re = 300)

Due to the chaotic nature of the original model, the ESN skill for
short-term prediction is limited
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Long-term prediction (Re = 300)

• ESN is able to “learn” the laminarization dynamics without experiencing
laminarization during the training

• Moreover, ESN is able to replicate the laminar solution
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Lifetime distribution

• ESN can successfully replicate the lifetime statistics
• Its skill may degrade depending on the time series used for training
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Turbulent-to-laminar transition (Re = 500)

• Ensemble approach can be used to estimate the probability of
turbulent-to-laminar transition

• The probability grows as the initial condition gets closer to the
laminarization event
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Laminar-to-turbulent transition (Re = 500)

• Robustness of the laminar state to finite-amplitude perturbations is
important for assessing laminar-to-turbulent transition

• Laminarization probability is the probability that a random
perturbation decays as a function of its kinetic energy3

• ESN can successfully replicate the laminarization probability
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3Pershin, Beaume, Tobias, J. Fluid Mech. 895, A16 (2020) 10



Conclusion

PP2 Poster Session II (Wednesday, 9:30am):
Assessing the Control of Finite-Amplitude Instabilities
via a Probabilistic Protocol: Application to Transitional Flows
Cedric Beaume, Anton Pershin, Steven Tobias

(a) Spatially extended flows?4 (b) Physics-informed ESN?5

(c) Optimal control using reservoir computing?

4Chantry et al., J. Fluid Mech. 791, R8 (2016)
5Pathak et al., Chaos 28, 041101 (2018) 11


