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Reynolds experiment
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Reynolds, Phil. Trans. R. Soc. London, 174 (1884)



Plane Couette flow

Incompressible Navier-Stokes equation:
U+ (u-Vu=-Vp+ Rlevzu
V-u=0
Streamwise and spanwise directions: periodic BCs

Wall-normal direction: no-slip BCs
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Subcritical transitional flows

Linearly stable laminar state  Sustained turbulence

Plane Couette flow all Re Re > 325
Pipe flow all Re Re Z 2040
Plane Poiseuille flow Re <5772 Re = 840

Transition is complicated by the coexistence of two attractive states:
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Snaking in plane Couette flow (47 x 2 x 327)

- First observed by Schneider et al. in 2010
- Homoclinic snaking is most studied for the Swift-Hohenberg equation?
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1Schneider et al, Phys. Rev. Lett., 104 (2010)
2Knobloch, Annu. Rev. Condens. Matter Phys., 6 (2015)



Oscillatory dynamics (Re ~ 200)
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Relaminarisation times for localized states
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Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of
streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW



Map of the dynamics
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- R1 peaks accumulating at Res are present for all initial states.
- Only wide enough states contain R2 and R3. 7



Region R1 - peaks (S5)

6000

5000

4000 4

3000

20004 J
SU
1000 4 S

176 178 180 182 184 186 188 190

Re

trelam

(Lﬂ
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peaks (S57)

- For wider initial conditions, peaks are smooth
- Crossing a peak corresponds to the gain of one period
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Region R2 - splitting

- Region R2 appears due to the creation and activation of spots
- The spot size is the same for all considered initial conditions
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Relaminarisation times for S13 integrated for Re € [185; 230].



Region R3 - chaotic transients

- Like R2, R3 originates from the splitting of the initial spot
- Unlike R2, R3 contains long-lasting chaotic transients (T > 4000)
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Relaminarisation times for S9 integrated for Re € [244; 254]. "



Control strategy: wall oscillations

We impose in-phase oscillations on the walls®:
u(x,£1,z,t) = tex + Asin(wt)e;
= Uiam = yex + W(y, t)e,.

3Motivated by Rabin et al,, ). Fluid Mech. 738 (2014)



Homotopy from the uncontrolled case for S5

- Fast relaminarization for A ~ O(107")
- Original regions are recovered for A <1072
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Relaminarisation times for the uncontrolled (blue) and wall-oscillated (orange) cases.



Homotopy from the uncontrolled case for S13

- Fast relaminarization for A ~ O(10~")
- Original regions are recovered for A <1073
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Relaminarisation times for the uncontrolled (blue) and wall-oscillated (orange) cases.
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Mech., 840 (2018)

Conclusion
’ Details: Pershin, Beaume and Tobias, J. Fluid Mech. 867, 414-437 (2019) ‘
(a) Stability analysis of the snakes?
comparison with Beaume, et al., ). Fluid

(b) Doubly localized solutions?*
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(c) Dynamics in wall-oscillated plane Couette flow?
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“Brand and Gibson, J. Fluid Mech. 750, R3 (2014)



