
Dynamics of exact localized states
in plane Couette flow

SIAM Conference on Dynamical Systems in Snowbird, Utah, U.S.
May 23, 2019

Anton Pershin, Cédric Beaume, Steven Tobias
School of Mathematics, University of Leeds



Reynolds experiment

Reynolds, Phil. Trans. R. Soc. London, 174 (1884)
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Plane Couette flow

Incompressible Navier–Stokes equation:

∂tu+ (u · ∇)u = −∇p+
1
Re

∇2u

∇ · u = 0

Streamwise and spanwise directions: periodic BCs

Wall-normal direction: no-slip BCs

x

y

Ulam = (y, 0, 0)

u|y=1 = (1, 0, 0)

u|y=−1 = (−1, 0, 0)
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Subcritical transitional flows

Linearly stable laminar state Sustained turbulence
Plane Couette flow all Re Re & 325
Pipe flow all Re Re & 2040
Plane Poiseuille flow Re . 5772 Re & 840

Transition is complicated by the coexistence of two attractive states:
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Snaking in plane Couette flow (4π × 2× 32π)

• First observed by Schneider et al. in 20101

• Homoclinic snaking is most studied for the Swift–Hohenberg equation2

1Schneider et al., Phys. Rev. Lett., 104 (2010)
2Knobloch, Annu. Rev. Condens. Matter Phys., 6 (2015)
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Oscillatory dynamics (Re ≈ 200)
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Relaminarisation times for localized states

Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of
streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW
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Map of the dynamics
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• R1 peaks accumulating at Res are present for all initial states.
• Only wide enough states contain R2 and R3. 7



Region R1 – peaks (S5)

• Peaks: Ren+1 − Res = α (Ren − Res)
• Local minima: tn = t0 + βn

=⇒ trelam =
β

lnα
ln

[
2 (Re− Res)

(1+ α) (Re0 − Res)

]
+ t0
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Region R1 – peaks (S7)

• For wider initial conditions, peaks are smooth
• Crossing a peak corresponds to the gain of one period
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Region R2 – splitting

• Region R2 appears due to the creation and activation of spots
• The spot size is the same for all considered initial conditions

Relaminarisation times for S13 integrated for Re ∈ [185; 230].
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Region R3 – chaotic transients

• Like R2, R3 originates from the splitting of the initial spot
• Unlike R2, R3 contains long-lasting chaotic transients (T > 4000)

Relaminarisation times for S9 integrated for Re ∈ [244; 254].
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Control strategy: wall oscillations

We impose in-phase oscillations on the walls3:

u(x,±1, z, t) = ±ex + Asin(ωt)ez
=⇒ Ulam = yex +W(y, t)ez.
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π
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3Motivated by Rabin et al., J. Fluid Mech. 738 (2014)
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Homotopy from the uncontrolled case for S5

• Fast relaminarization for A ∼ O(10−1)
• Original regions are recovered for A . 10−2

Relaminarisation times for the uncontrolled (blue) and wall-oscillated (orange) cases. 13



Homotopy from the uncontrolled case for S13

• Fast relaminarization for A ∼ O(10−1)
• Original regions are recovered for A . 10−3

Relaminarisation times for the uncontrolled (blue) and wall-oscillated (orange) cases. 14



Conclusion

Details: Pershin, Beaume and Tobias, J. Fluid Mech. 867, 414–437 (2019)

(a) Stability analysis of the snakes?
comparison with Beaume, et al., J. Fluid
Mech., 840 (2018)

(b) Doubly localized solutions?4

(c) Dynamics in wall-oscillated plane Couette flow?

4Brand and Gibson, J. Fluid Mech. 750, R3 (2014) 15


