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Reynolds experiment

Reynolds, Phil. Trans. R. Soc. London, 174 (1884)
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Questions and approaches

Questions:

• Reg for stability of laminar state?
• Rec for stability of turbulent state?
• If Reg 6= Rec, what determines whether the flow goes laminar or
turbulent in between?

Statistical approach:

• spots splitting vs. decay probabilities
• e.g., Avila et al., Science 333, 192 (2011)

• directed percolation
• e.g., Chantry et al., J. Fluid Mech. 824, R1 (2017)

Dynamical systems approach:

• bifurcations to chaos
• invariant solutions as a skeleton of a chaotic attractor

• e.g., Kawahara et al., Annu. Rev. Fluid Mech. 44, 203 (2012)
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Plane Couette flow

Navier–Stokes equation:

∂tu+ (u · ∇)u = −∇p+
1
Re

∇2u

Incompressibility condition: ∇ · u = 0

Domain: R× [−1; 1]× R

x

y

U = (y, 0, 0)

u|y=1 = (1, 0, 0)

u|y=−1 = (−1, 0, 0)
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Subcritical transitional flows

Linearly stable laminar state Sustained turbulence
Plane Couette flow all Re Re & 325
Pipe flow all Re Re & 2040
Plane Poiseuille flow Re . 5772 Re & 840

Transition is complicated by the coexistence of two attractive states:
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Localised edge states

(a) 63.7π × 2× 15.9π (Duguet et al.,
Phys. Fluids, 21, 111701 (2009)):

(b) 64π × 2× 16π (Schneider, et al., J.
Fluid Mech., 646 (2010)):

(c) 4π × 2× 8π (Schneider, et al., J. Fluid Mech., 646 (2010)):

5



Snaking in plane Couette flow (4π × 2× 32π)

First observed by Schneider et al., Phys. Rev. Lett., 104 (2010).

Model of homoclinic snaking is provided by Swift–Hohenberg
equation (Knobloch, Annu. Rev. Condens. Matter Phys., 6 (2015))
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Depinning

Depinning: expanding/collapsing of the initial spatial pattern
outside the snaking by nucleation/annihilation of cells.

It is characterised by a square-root law of the speed of front:
c ∝ |Re− Res|1/2.

Evidence of depinning (Duguet et al., Phys. Rev. E, 84 (2011))
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Transition problem

1. Does depinning describe transition to turbulence?
2. If not, how do localised states turn to turbulence?

Let’s consider the time-evolution of the right saddle-nodes states for
Re ∈ (Res; 350].

The problem set-up:

• Large spanwisely extended domain: 4π × 2× 32π.
• Initial conditions: right saddle-nodes states, Re ∈ (Res; 350].
• Pseudo-spectral solver with Fourier–Chebyshev–Fourier
transform at 32× 33× 512 collocation knots.

• 1.6× 106 degrees of freedom.

Code: channelflow (John Gibson).
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Oscillatory dynamics (Re ≈ 200)
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Relaminarisation times for localised states

No depinning!

Relaminarisation times for EQ and TW saddle-nodes states (blue and red curves
resp.). Midplane of streamwise velocity of EQ saddle-nodes is shown on the left.

No principal difference between the dynamics of EQ and TW. 10



Map of the dynamics
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• R1 peaks accumulating at Res are present for all initial states.
• Only wide enough states contain R2 and R3. 11



Region R1 – peaks (S5)

• Peaks: Ren+1 − Res = α (Ren − Res)
• Local minima: tn = t0 + βn

=⇒ trelam =
β

lnα
ln

[
2 (Re− Res)

(1+ α) (Re0 − Res)

]
+ t0

12



Region R1 – peaks (S7)

For wider initial conditions, peaks are smoothed.
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Crossing a peak corresponds to a loss of a cycle.
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Region R2 – splitting

Region R2 appears due to the creation of the spots and their
activation.

Relaminarisation times for S13 integrated for Re ∈ [185; 230].

The size of spots is the same for all considered initial conditions. 14



Region R3 – chaotic transients

Like R2, R3 originates from the splitting of the initial spot.

Unlike R2, R3 contains long-lasting chaotic transients (T > 4000).

Relaminarisation times for S9 integrated for Re ∈ [244; 254]. 15



Conclusion

Future work:

• Stability analysis of the snaking branches
• =⇒ comparison with Beaume, et al., J. Fluid Mech., 840 (2018)

• Control of relaminarisation times
• Control of front speed in the transitional regime

Open questions:

• What determines the presence of depinning?
• How could we characterise the dynamics inside R2 and R3 apart
from simple statistics?
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