

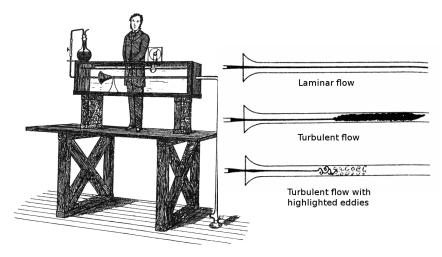
Towards the control of transitional flows

Dynamics Seminar, University of Exeter, Exeter, UK October 8, 2019

Anton Pershin, Cédric Beaume, Steven Tobias

School of Mathematics, University of Leeds

Reynolds experiment



Reynolds, Phil. Trans. R. Soc. London, 174 (1884)

1

Plane Couette flow

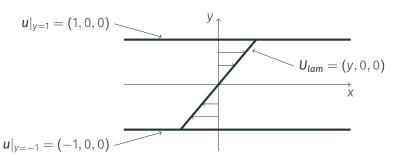
Navier-Stokes equation:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$

Incompressibility condition: $\nabla \cdot \mathbf{u} = 0$

Streamwise and spanwise directions: periodic BCs

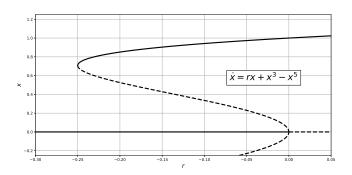
Wall-normal direction: no-slip BCs



Subcritical transitional flows

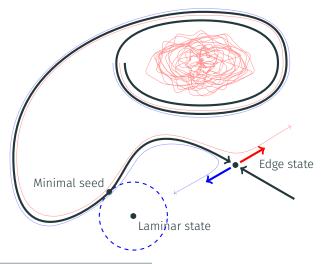
	Linearly stable laminar state	Sustained turbulence
Plane Couette flow	all Re	Re ≳ 325
Pipe flow	all <i>Re</i>	$Re \gtrsim 2040$
Plane Poiseuille flow	Re ≲ 5772	$Re \gtrsim 840$

Transition is complicated by the coexistence of two attractive states:



Edge of chaos

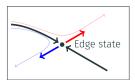
Edge of chaos is wrapped up around the turbulent saddle¹

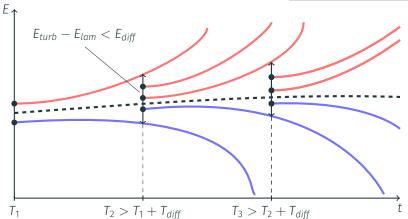


¹Chantry et al., J. Fluid Mech. **747** (2014)

Edge tracking

Edge tracking allows to compute edge states



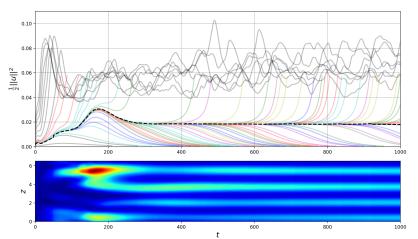


domain

Transition and control in a small

Edge states in plane Couette flow

Edge states are equilibria in small domains:²



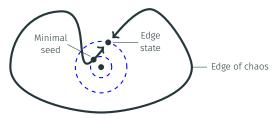
Top plot: initial trajectories (gray), following iterations (color) and edge trajectory (dashed). Bottom plot: edge trajectory represented via xy-averaged kinetic energy.

²Schneider *et al.*, Phys. Rev. E, 76, 016301 (2007)

How robust is the laminar state to perturbations?

Indicators of stability:

- \cdot Infinitesimal perturbations \Longrightarrow linear growth rate
- \cdot Finite-amplitude perturbations \Longrightarrow the size of the basin of attraction



Laminarisation probability $P_{lam}(E)$ is the probability that a random finite perturbation of energy E laminarises

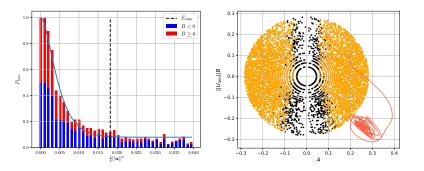
Random perturbation:

$$u = Au_{\perp} + BU_{lam}$$

where A, B, u_{\perp} are generated randomly and $\langle u_{\perp}, U_{lam} \rangle = 0$

Laminarisation probability

- $P_{lam}(E)$ approximates the size of the basin of attraction
- Laminarisation probability fitting: $p(E) = 1 (1 a)\gamma(\alpha, \beta E)$
- · Control strategies can be assessed by comparing $P_{lam}(E)$

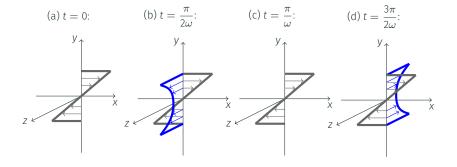


Left: laminarisation probability for perturbations with energies between 0 and $2E_{edge}$ Right: random perturbations classified as laminarising (black) and transitioning (yellow)

Control strategy: wall oscillations

We impose in-phase oscillations on the walls³:

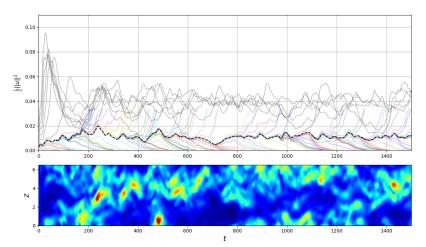
$$\begin{aligned} u(x,\pm 1,z,t) &= \pm e_x + Asin(\omega t)e_z \\ \Longrightarrow & U_{lam} = ye_x + W(y,t)e_z. \end{aligned}$$



³Motivated by Rabin *et al.*, J. Fluid Mech. **738** (2014)

Edge state for wall-oscillated flow

- Consider A=0.3 and $\omega=1/16$ \Longrightarrow the edge state is chaotic
- The average E_{edge} is decreased by approximately 37%



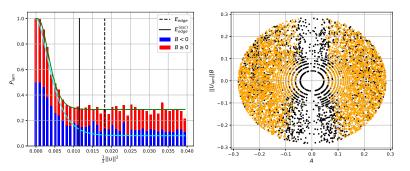
Top plot: initial trajectories (gray), following iterations (color) and edge trajectory (dashed). Bottom plot: edge trajectory represented via xy-averaged kinetic energy.

Laminarisation probability for wall-oscillated flow

- \cdot P_{lam} is significantly increased compared to the uncontrolled case
- Relative probability increase:

$$\frac{1}{2E_{edge}} \int_0^{2E_{edge}} \frac{p_{osc}(E) - p(E)}{p(E)} dE \approx 1.8$$

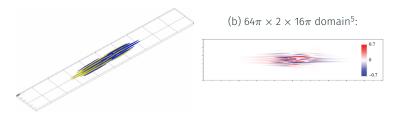
· Laminarising perturbations are spread all over the space $(A, ||U_{lam}||B)$



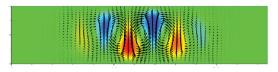
Left: laminarisation probability for perturbations with energies between 0 and $2E_{edge}$ Right: random perturbations classified as laminarising (black) and transitioning (yellow)

Transition to turbulence in a wide domain

Localised edge states



(c) $4\pi \times 2 \times 8\pi$ domain⁵:

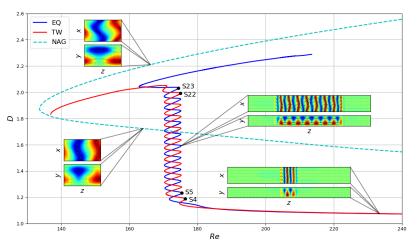


⁴Duguet *et al.*, Phys. Fluids, 21, 111701 (2009)

⁵Schneider, et al., J. Fluid Mech., 646 (2010)

Snaking in plane Couette flow $(4\pi \times 2 \times 32\pi)$

- \cdot First observed by Schneider et al. in 2010 6
- Homoclinic snaking is most studied for the Swift–Hohenberg equation⁷

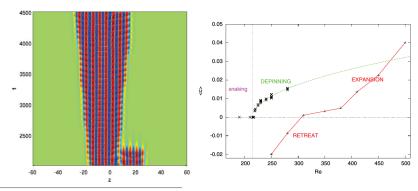


⁶Schneider et al., Phys. Rev. Lett., **104** (2010)

⁷Knobloch, Annu. Rev. Condens. Matter Phys., 6 (2015)

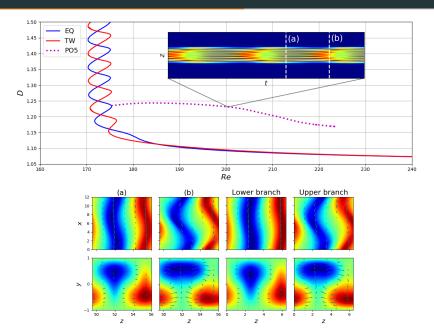
Depinning

- **Depinning** is the process of expansion/collapse of the initial spatial pattern outside the snaking by nucleation/annihilation of cells
- Square-root law of the speed of fronts: $c \propto |Re Re_s|^{1/2}$
- · Depinning in plane Couette flow was witnessed by Duguet et al.8

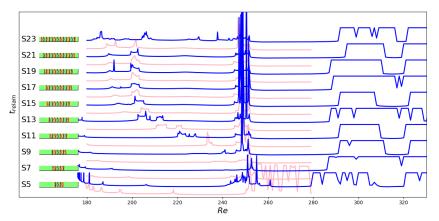


⁸Duguet *et al.*, Phys. Rev. E, 84 (2011)

Localised periodic orbit and oscillatory dynamics



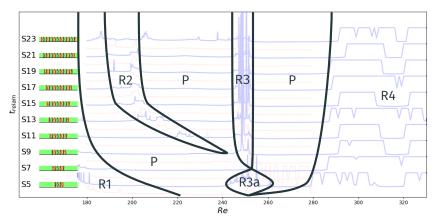
Relaminarisation times for localised states



Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW

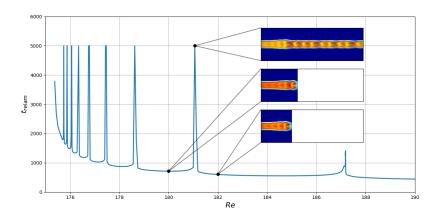
Relaminarisation times for localised states



Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW

Region R1 – peaks (S5)



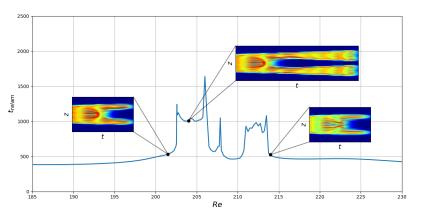
• Peaks:
$$Re_{n+1} - Re_s = \alpha (Re_n - Re_s)$$

• Local minima: $t_n = t_0 + \beta n$

$$\implies t_{relam} = \frac{\beta}{\ln \alpha} \ln \left[\frac{2 (Re - Re_s)}{(1 + \alpha) (Re_0 - Re_s)} \right] + t_0$$

Region R2 – splitting

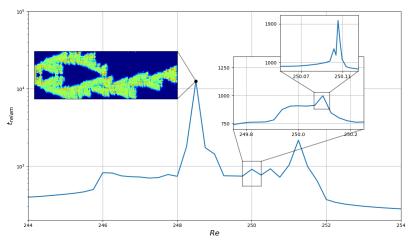
- Region R2 appears due to the creation and activation of spots
- The spot size is the same for all considered initial conditions



Relaminarisation times for S13 integrated for $Re \in [185; 230]$.

Region R3 – chaotic transients

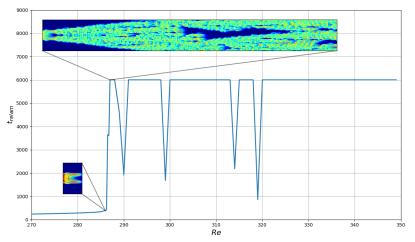
- · Like R2, R3 originates from the splitting of the initial spot
- \cdot Unlike R2, R3 contains long-lasting chaotic transients (T > 4000)
 - · Decay of roll clusters overwhelms front propagation



Relaminarisation times for S9 integrated for $Re \in [244; 254]$.

Region R4 – transition to turbulence

- Front propagation overwhelms decay of roll clusters
- Average front speed $\langle c \rangle = 0.02$ does not depend on Re for Re < 350



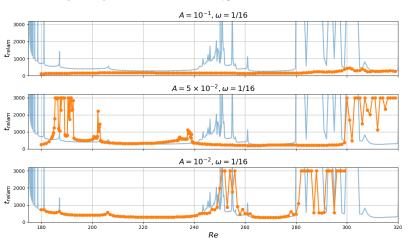
Relaminarisation times for S7 integrated for $Re \in [270; 350)$ and cut at $t_{relam} = 6000$.

Control of transition in a wide

domain

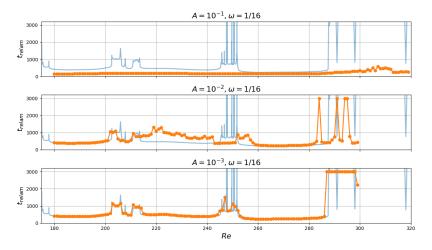
Homotopy from the uncontrolled system for S5

- \cdot Control strategies can be assessed by comparing $t_{\it relam}$
- Consider in-phase wall oscillations with $\omega=1/16$
 - Fast relaminarization for A $\sim O(10^{-1})$
 - Original regions are recovered for $A \lesssim 10^{-2}$



Homotopy from the uncontrolled system for S13

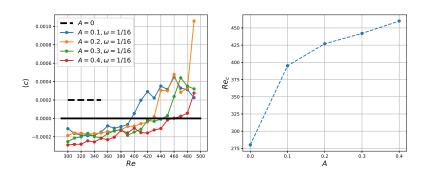
- Fast relaminarization for $A \sim O(10^{-1})$
- \cdot Original regions are recovered for A $\lesssim 10^{-3}$



Relaminarisation times for the uncontrolled (blue) and wall-oscillated (orange) cases.

The onset of R4 for S5

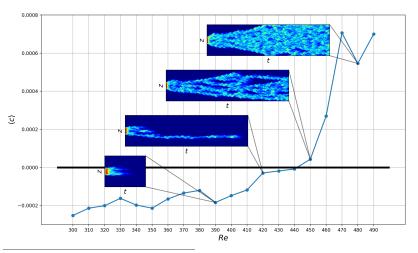
- For amplitudes $A \gtrsim 10^{-1}$, the only existing region is R4
- · Increasing A delays the onset of R4



What amplitude and frequency are optimal?

Stages of transition

Wall oscillations favour directed-percolation-like transition ^{9,10}:



⁹Sipos and Goldenfeld, Phys. Rev. E 84, 035304 (2011)

¹⁰Chantry et al., J. Fluid Mech. **824**, R1 (2017)

Conclusion

Laminarisation probability:

- · Helps analyse finite-amplitude instabilities
- Approximates the size of the basin of attraction
- · Allows to quantify and compare the efficiency of control strategies
- Minimal seeds and edge states may be misleading while designing control

Pershin, Beaume and Tobias, submitted, arXiv:1908.03050 (2019)

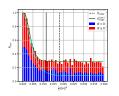
Transition in a wide domain:

- · Exact solutions are reproducible initial conditions
- · Characterise transitional dynamics via relaminarisation times
- Exact solutions + relaminarisation times = framework
 ⇒ Assessment of control strategies

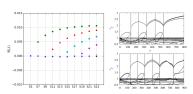
Pershin, Beaume and Tobias, J. Fluid Mech. 867, 414-437 (2019)

Future work

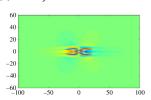
(a) Designing control using P_{lam} ? Large domains?



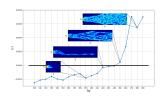
(b) Stability analysis of the snakes? compare with doubly-diffusive convection¹¹



(c) Doubly localized solutions?¹²



(d) Optimal delay of transition?



¹¹Beaume, et al., J. Fluid Mech., **840** (2018)

¹²Brand and Gibson, J. Fluid Mech. **750**, R3 (2014)