

How fast do exact localized states relaminarize in plane Couette flow?

Euromech Colloquium 598 «Coherent structures in wall-bounded turbulence: new directions in a classic problem» at Imperial College London August 29, 2018

Anton Pershin, Cédric Beaume, Steven Tobias

School of Mathematics, University of Leeds

Plane Couette flow

Incompressible Navier-Stokes equation:

$$\partial_t u + (u \cdot \nabla)u = -\nabla p + \frac{1}{Re} \nabla^2 u$$

 $\nabla \cdot u = 0.$

	Linearly stable laminar state	Sustained turbulence
Plane Couette flow	all Re	$Re\gtrsim325$
Pipe flow	all <i>Re</i>	$Re\gtrsim$ 2040
Plane Poiseuille flow	$Re\lesssim$ 5772	$Re\gtrsim$ 840

Snaking in plane Couette flow ($4\pi \times 2 \times 32\pi$)

First observed by Schneider *et al.*, Phys. Rev. Lett., 104 (2010).

Model of homoclinic snaking is provided by Swift–Hohenberg equation (Knobloch, Annu. Rev. Condens. Matter Phys., 6 (2015))

Oscillatory dynamics ($Re \approx 200$)

Relaminarisation times for localised states

Relaminarisation times for EQ and TW saddle-nodes states (blue and red curves resp.). Midplane of streamwise velocity of EQ saddle-nodes is shown on the left.

No principal difference between the dynamics of EQ and TW

Map of the dynamics

- R1 peaks accumulating at Res are present for all initial states.
- Only wide enough states contain R2 and R3.

Region R1 – peaks (S5)

- Peaks: $Re_{n+1} Re_s = \alpha (Re_n Re_s)$
- Local minima: $t_n = t_0 + \beta n$

$$\implies t_{relam} = \frac{\beta}{\ln \alpha} \ln \left[\frac{2(Re - Re_s)}{(1 + \alpha)(Re_0 - Re_s)} \right] + t_0$$

Region R1 – peaks (S7)

For wider initial conditions, peaks are smoothed.

Crossing a peak corresponds to the gain of the cycle.

Region R2 – splitting

Region R2 appears due to the creation of the spots and their activation.

Relaminarisation times for S13 integrated for $Re \in [185; 230]$.

The size of spots is the same for all considered initial conditions.

Region R3 – chaotic transients

Like R2, R3 originates from the splitting of the initial spot.

Unlike R2, R3 contains long-lasting chaotic transients (T > 4000).

Relaminarisation times for S9 integrated for $Re \in [244; 254]$.

Conclusion

(a) Depinning?

comparison with Duguet *et al.*, Phys. Rev. E, 84 (2011)

(b) **Stability analysis of the snakes?** comparison with Beaume, *et al.*, J. Fluid Mech., 840 (2018)

(c) Control of relaminarisation times and front growth?

